
A distributed algorithm

to find Hamiltonian cycles

in G(n, p) random graphs∗

Eythan Levy† Guy Louchard† Jordi Petit‡

Abstract

In this paper, we present a distributed algorithm to find Hamiltonian cycles in
random binomial graphs G(n, pn). The algorithm works on a synchronous distributed
setting by first creating a small cycle, then covering almost all vertices in the graph with
several disjoint paths, and finally patching these paths and the uncovered vertices to
the cycle. Our analysis shows that, with high probability, our algorithm is able to find
a Hamiltonian cycle in G(n, pn) when pn = ω(

√
log n/n1/4). Moreover, we conduct an

average case complexity analysis that shows that our algorithm terminates in expected
sub-linear time, namely in O(n3/4+ε) pulses.

1 Introduction

It is well known that finding a Hamiltonian cycle in a graph is an NP-hard problem [6].
Therefore, a possible way to cope with this problem is to devise algorithms that are fast on
the average with respect to a natural probability distribution of graphs. The main purpose of
this paper is to present and analyze a randomized distributed algorithm to find Hamiltonian
cycles in binomial random graphs.

Recall that a Hamiltonian cycle is a cycle that visits each vertex of a graph exactly once.
If a graph has a Hamiltonian cycle, it is said to be Hamiltonian. The model of random graphs
that we consider is the popular G(n, pn) binomial random graph distribution. In this model,
graphs contain n vertices {1, . . . , n} and each of the

(
n
2

)
possible edges are independently

included with probability pn. The question whether a binomial random graph is Hamiltonian
is well solved: For any divergent function t(n), a graph in G(n, pn) is Hamiltonian with high
probability for pn = (log n + log log n + t(n))/n; see [2] for a classical reference.

Several algorithms have been proposed to deliver, with high probability, Hamiltonian
cycles in G(n, pn) graphs provided that pn is sufficiently large. Recall that a sequence of
events (En)

n∈N holds with high probability (w.h.p.) if limn→∞Pr[En] = 1. Angluin and

∗This research was partially supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT) and by the Spanish CICYT project TIC2002-04498-C05-03 (TRACER).

†Département d’Informatique, Université Libre de Bruxelles. Bld du Triomphe — CP 212, B-1050 Brux-
elles (Belgium). {elevy, louchard}@ulb.ac.be

‡Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya. Campus Nord
C6-207. 08034 Barcelona (Spain). jpetit@lsi.upc.es

1



Valiant [1] devised an O(n log2 n) algorithm to find Hamiltonian cycles w.h.p when pn is high
enough. Later, Shamir [13] improved this algorithm to cope with lower probabilities of the
form pn ≥ c(log n + log log n)/n with c > 3. Gurevich and Shelah [7] presented a linear
time algorithm when pn is constant. The HAM algorithm of Bollobás, Fenner and Frieze [3]
runs in expected polynomial time and is essentially best possible with regards to pn. On the
other hand, it has also been shown that there exist exact algorithms to determine whether
or not a graph is Hamiltonian that run in polynomial expected running time over the class
of binomial random graphs: Bollobás, Fenner and Frieze [3] also gave an algorithm to decide
Hamiltonicity in G(n, p) graphs with p ≥ 1/2 in expected polynomial time. Thomason [15]
improved this result to expected O(n/pn) time when pn ≥ 12n−1/3. Also, Frieze [5] presented a
parallel algorithm that for any constant p decides Hamiltonicity in expected poly-logarithmic
time on a PRAM.

As said, all these algorithms are sequential, except Frieze’s parallel algorithm for PRAM
machines (with a centralized memory). However, to the best of our knowledge, a fully dis-
tributed algorithm for this problem has not been yet proposed. Such an algorithm could nev-
ertheless find interesting applications in the fields of distributed computation. For instance,
with a Hamiltonian cycle it is possible to build a path to perform distributed computations
based on end-to-end communication protocols, which allow distributed algorithms to treat
an unreliable network as a reliable channel [12]. Also, a Hamiltonian cycle is useful for the
purpose of forming token rings in the network, establishing a sense of direction, and as part
of distributed algorithms for election or mutual exclusion [11, 14]. Our algorithm can also
find useful applications in emerging systems, as we will discuss in the conclusions.

Our setting for distributed computation is the classical model of synchronous networks
(see e.g. Chapter 12 in [14]), where the algorithm takes place in a sequence of discrete steps,
called pulses, in which every process first sends (zero or more) messages, then receives all the
messages addressed to it during that same pulse, and finally performs local computations.
Our distributed algorithm is designed for random graphs in the sense that the topology of
the network is obtained by selecting a random graph, which means that each node of the
network corresponds to a vertex of the graph. As usual, a node can only communicate with
its direct neighbors in the graph and has no direct knowledge of the rest of the network
topology. Finally, we suppose that the nodes are labeled in a way consistent with that of the
G(n, pn) graph, and that nodes know the identities of their neighbors. Recall that the time
complexity of distributed synchronous algorithms is defined as the number of pulses needed
for the algorithm to terminate. Our algorithm has been designed to optimize time complexity,
rather than message complexity. It is a well known fact in distributed computation that the
optimization of these two quantities are often conflicting goals.

Within this setting, the paper is organized as follows: First, we present a high level
description of the distributed algorithm. Then, we analyze it’s probability of success over the
probability space of G(n, pn) graphs for a suitable probability function pn. Our results show
that w.h.p. our algorithm finds Hamiltonian cycles when pn = ω(

√
log n/n1/4). Finally, we

prove that the average running complexity of our algorithm is O(n3/4+ε) pulses. We close the
paper with some concluding remarks.

Due to lack of space, we omit a formal exposition of the algorithm and simply sketch
most of the proofs. Complete proofs will be included in the full version of this paper and can
be obtained at [10].

2



(a) End of phase 1 (b) End of phase 2

(c) Phase 3 in process (d) End of Phase 3

Figure 1: Phases of the algorithm.

2 High level description of the algorithm

Our algorithm works in three main sequential phases:

1. Initial cycle phase: In this phase an initial small cycle with Θ(
√

n) vertices is found
in the graph.

2. Path covering phase: In this phase, almost all the vertices out of the initial cycle are
covered by

√
n vertex-disjoint paths.

3. Patching phase: In this phase, each path and each non covered vertex is patched into
the initial cycle.

Let us give some more details on each phase. Figure 1 depicts the phases of the algorithm.

Phase 1 (Initial cycle). The goal of this phase is to build an initial cycle of length Θ(
√

n).
In order to build such a cycle, the algorithm proceeds in two steps. First, it sequentially builds
a path of length λ1 = 6

√
n beginning with a initiator vertex (which we call v0); then, it tries

to loop this path back to v0 by extending the path as long as the path extremity is not
adjacent to v0. The algorithm stops its execution with a failure —and broadcasts the failure
information to all nodes— if the length of the path becomes greater than λ2 = 7

√
n or if it

does not succeed in extending the path. Broadcasting in a graph of arbitrary topology can
be done in linear worst-case time with respect to the diameter using a wave algorithm (see
Chapter 6 of [14]).

3



Vertices in the cycle (and in the paths of Phase 2) are said to be “used” and vertices
out of the cycle are said to be “free”. At all times the nodes should know the subset of their
neighbors that are still free. To achieve this, the new endpoint of the current path always
sends a message to all its (free) neighbors, notifying them of its transition to the “used” state.

Phase 2 (Path covering). The goal of this phase is to cover almost all the vertices not
included in the cycle by a set of

√
n vertex-disjoint paths leaving, at most,

√
n vertices

uncovered.
In order to cover the vertices, the

√
n paths will grow in parallel from a set of

√
n initial

vertices chosen by v0 among its free neighbors, after the completion of the initial cycle. A
path extends its-self by its two extremities in the following way: an extremity chooses one of
its free neighbors uniformly at random, and sends an extension message to it, waiting for its
answer. These choices are synchronized between all the participating extremities.

Free vertices wait for extension messages emanating from the extremities and pick one
of these messages uniformly at random, to which they answer. Then, each one of these
free neighbors thus becomes the new extremity of one of the paths, and will execute this
same extension mechanism at the next round of Phase 2. All path extremities that have not
received an answer from the free neighbor they had chosen are not allowed to participate to
the following rounds of Phase 2; their extension is then completely stopped. The absence of
free neighbors is another possible reason for the ceasing of the extension at one extremity.

When a path extremity cannot extend itself anymore, it sends its identity, together with
the length of its (half-)path, to the initiator. The initiator is always reachable by transmitting
the message through the path itself, toward the initial node of that path. After v0 has received
these termination messages from all the

√
n covering paths, it is able to determine if the

covering phase is successful or not. In the negative case, that is, when more than
√

n vertices
have remained uncovered, the initiator terminates the algorithm with failure, by broadcasting
the failure information to all nodes.

In this phase, we also suppose that, in the same way as in Phase 1, the newly selected
path extremities begin by sending a message to all their (free) neighbors, notifying them of
their new used state.

Phase 3 (Patching). In this phase, the paths and the uncovered vertices are tried to be
patched to the initial cycle. In the case that all of all them can be patched to the cycle,
a Hamiltonian cycle will be returned; otherwise the algorithm will report failure. In the
following, uncovered vertices will be treated as paths of length zero.

Phase 3 starts by gathering in v0 the identities of the uncovered vertices. This can easily
be done using a wave algorithm as shown in [14].

Patching an individual path to the cycle is done according to the simple idea depicted
in Figure 2: if u and v are two consecutive vertices in the cycle and s and t are the two
endpoints of the path, the path can be patched to the cycle if edges us and vt or ut and vs
exist in the graph. Patching a path with length zero to a cycle is done in the same way, just
taking s = t.

In practice, the patching trials, for a fixed path, are done using a patching message that
circulates round the cycle, and contains the identities of s and to t, as well as two boolean
variables denoting whether the sender of the message is adjacent to s and t. Let C1, . . . , Ck,
with C1 = v0, be the nodes of the cycle. The message is initially launched by v0, and upon

4



arrival at a node Ck, checks whether the path is patchable to nodes Ck−1 and Ck. If it is the
case, then nodes s, t, and Ck−1 are notified of the cycle update and the patching of the path
terminates. If not, the patching message is updated, and sent by Ck towards Ck+1. If the
patching message loops back to the initiator with no success, then the patching for that path
has failed.

The overall patching of the paths is done in parallel, by pipelining several patching mes-
sages —one per path— on the cycle. These messages are initially launched by v0, separated
by a delay of three time pulses, in order to avoid possible inconsistencies in the patchings
performed by two adjacent messages. This delay between the messages explains the con-
stants 6 and 7 used in Phase 1: they guarantee that the cycle is long enough to contain all
the patching messages. When a patching trial succeeds, a notifying message is sent towards
the initiator, using a broadcast algorithm. Thus, at the end of Phase 3, the initiator knows
exactly how many patching trials have succeeded, and performs one last broadcast in order
to notify all the nodes of the final result of the algorithm, being success or failure. In the
successful case, all nodes have the knowledge of their two neighbors in the Hamiltonian cycle.

(a) Cycle and path (b) First possibility (c) Second possibil-
ity

Figure 2: Patching a path into a cycle.

3 Analysis of the probability of success

In this section, we estimate the probability that the proposed algorithm finds a Hamiltonian
cycle on a random binomial graph. We work with pn = ω(n−1/4

√
log n), the reason will be

apparent in the proof of Lemma 3.5.
Let I i

n be the indicator random variables denoting the success of Phase i conditioned to
the success of Phase j, with j < i. Then, denote by In = I1

n · I2
n · I3

n the indicator random
variables denoting that the algorithm finds a Hamiltonian cycle.

We start by showing that Phase 1 succeeds w.h.p. when pn = ω(n−1/4
√

log n):

Lemma 3.1. For all pn = ω(n−1/4
√

log n), we have Pr[I1
n = 1] → 1.

Proof. For the sake of making the proof clearer, assume that the first phase of the algorithm
has been replaced by the following algorithm, which trivially has a lower probability of success:
Instead of computing first a path of length λ1 and then trying to close it until it reaches a
maximal length λ2, directly build a path of length λ2 (Phase 1a) and then try to close the

5



path by successively trying the vertices from λ2 to λ1 (Phase 1b). We show below that this
variant has a high probability of success.

Call step i the step where the algorithm tries to extend a path of length i − 1. The
probability that phase 1a succeeds is:

Pr[I1a
n ] = Pr[∧λ2

i=1 step i succeeds | ∧j<i step j succeeds]

=

λ2∏
i=1

(1− fn−i
n ) ≥

λ2∏
i=1

(1− fn−λ2
n )

=
(
1− fn−7

√
n

n

)6
√

n

=
(
1− fΘ(n)

n

)Θ(
√

n)
=

(
1− (1− pn)Θ(n)

)Θ(
√

n)

∼ (
1− e−pnΘ(n)

)Θ(
√

n) ∼
(
e−e−pnΘ(n)Θ(

√
n)

)
.

Let us see under which conditions this quantity tends to infinity:(
e−e−pnΘ(n)Θ(

√
n)

)
→ 1 ⇐⇒ e−pnΘ(n)Θ(

√
n) → 0

⇐⇒ exp log
(
e−pnΘ(n)Θ(

√
n)

) → 0

⇐⇒ log
(
e−pnΘ(n)Θ(

√
n)

) → −∞
⇐= −pnΘ(n) + Θ(log n) → −∞
⇐= pn = ω(n−

1
4

√
log n).

On the other hand, since
√

n edges are tried for closing the cycle, we have Pr[I1b
n =

1] = 1 − f
Θ(
√

n)
n , which tends to 1 as n tends to infinity when pn = ω(n−1/2), by the exp-log

transformation.
As Pr[I1

n = 1] = Pr[I1a
n = 1] ·Pr[I1b

n = 1], we get the desired result.

Let I2a
n be the indicator random variable denoting wether the initiator can find the

√
n

free vertices that will initiate the covering paths in Phase 2.

Lemma 3.2. For all pn = ω(n−1/4
√

log n), we have Pr[I2a
n = 1] → 1.

Proof. Note that the number of free neighbors of the initiator is given by a random variable
with binomial distribution Bin(Θ(n), pn). The result follows immediately from an application
of Chebyshev’s inequality to that variable.

Let I2b
n be the indicator random variable denoting wether the extension algorithm suc-

ceeds in covering all but at most
√

n of the free vertices.

Lemma 3.3. For all pn = (log n + δ(n))/
√

n with δ(n) →∞, we have Pr[I2b
n = 1] → 1.

Proof. The probability of being able to cover all but at most
√

n of the free vertices, using
our

√
n disjoint paths is bounded below by the probability of attaining such a covering using

only one path (unidirectionally). We shall show that the probability of this last event, say
π, tends to one as n tends to infinity. Let F be the number of free vertices at the start of
Phase 2.

Note that, at each round of the algorithm, as long as there remains more
√

n free nodes,
the probability of ceasing the extension phase is bounded above by (1−pn)

√
n, the probability

of the extremity not being adjacent to
√

n fixed free vertices.

6



Since π equals the probability of being able to extend the path more than F −√n times,
we have:

π ≥
(
1− (1− pn)

√
n
)F−√n

=
(
1− (1− pn)

√
n
)n−Θ(

√
n)

>
(
1− (1− pn)

√
n
)n

∼ e−n(1−pn)
√

n

.

The last of the above expressions tends to one if and only if n(1− pn)
√

n tends to 0, which is

the case if and only if pn = log n+δ(n)√
n

, with δ(n) →∞:

e−n(1−pn)
√

n → 1 ⇐⇒ n(1− pn)
√

n → 0 ⇐⇒ ne−pn
√

n → 0

⇐⇒ log
(
ne−pn

√
n
)
→ −∞⇐⇒ log n− pn

√
n → −∞

⇐⇒ pn =
log n + δ(n)√

n
, with δ(n) →∞.

From Lemma 3.2 and Lemma 3.3, we get the probability of success of Phase 2:

Lemma 3.4. For all pn = ω(n−1/4
√

log n), Pr[I2
n = 1] → 1.

We finally compute the probability of success of Phase 3.

Lemma 3.5. For all pn = ω(n−1/4
√

log n), Pr[I3
n = 1] → 1.

Proof. The probability of success of our algorithm is trivially higher than the probability of
success of the following variant patching procedure. In the variant algorithm, only one edge
out of two, alternatively, is tried for patching, i.e., if the nodes of the cycle are C1, . . . Ck,
only edges C1C2, C3C4, . . . will be tried for patching. This variant patching algorithm has the
advantage of making only independent patching trials. We show below that its probability
of success tends to 1.

Note that at wathever stage of the patching phase, the length of the initial cycle is always
Ω(
√

n). It is also easy to see that the probability of success of one fixed patching trial of a
path at edge CiCi+1 is p2

n if the path has length 0, and 2p2
n − p4

n otherwise. It is thus always
Θ(p2

n). We can conclude that the probability of failure of our variant algorithm is bounded
above by (1−Θ(p2

n))
√

n. Since we need to patch Θ(
√

n) paths, we have:

Pr[I3
n = 1] ≥

(
1− (1−Θ(p2

n))Θ(
√

n)
)Θ(

√
n)

Using similar techniques as in the previous proofs, it can be shown that the above probability
tends to 1.

From the preceding results, we obtain that the distributed algorithm finds a Hamiltonian
cycle w.h.p.:

Theorem 3.6. For all pn = ω(n−1/4
√

log n), we have limn→∞Pr[In = 1] = 1.

7



4 Complexity analysis

In this section, we analyze the expected running time of the synchronous distributed algo-
rithm.

Let Tn be the random variable denoting the time complexity of our algorithm on a
G(n, pn) random graph, with pn = ω(n−1/4

√
log n). Also, let T 1

n , T 2
n , T 3

n and T 4
n be the

random variables denoting respectively, the costs of Phases 1, 2, 3 and of the termination
wave. For the sake of simplicity, the waves executed at the end of Phase 3 shall be counted in
T 4

n . In order to get an upper bound on the average-case complexity of the algorithm, below
we analyze the expected complexity of each of these variables.

The worst-case time complexity of Phase 1 is easily seen to be Θ(
√

n), since this phase
sequentially establishes a path of length Θ(

√
n), with the establishment of each edge of the

path taking constant time. Therefore, we have:

Lemma 4.1. E[T 1
n ] = O(

√
n).

Let Diam(G) be the expected value of the maximal diameter of the connected components
of a graph G. The next result characterizes the expected diameter of G(n, pn) graphs:

Lemma 4.2. Let pn = ω(n−1/4
√

log n). Then

E[Diam(G(n, pn))] = O

(
log n

pn

)
= o

(
n1/4

√
log n

)
Sketch of the proof. The full proof is omitted here. In short, we bound the diameter of
the graph by the height of a random tree inspired by the Galton–Watson process outlined

in [8]. We then show the average height of that tree to be O
(

log n
pn

)
using the saddle point

method.

The main element for the proof on the running time of Phase 2 is given by the lemma
below, whose proof is based on a discrete urns modelization of the path covering algorithm.
The complete proof uses tools such as limiting theorems for urns occupations, Brownian
motion and differential equations.

Lemma 4.3. Let G be a G(n, pn) graph, with n = n2
0+n0. Let there be n0 initial vertices used

to cover the remaining n2
0 vertices of G using our paths extension algorithm. Let α > 3/4,

ε > 0, and pn ≥ α+ε
n2α

0
ln n0. Let Vα be defined as the time needed to reach a configuration with

less than n2α
0 free vertices, if such a configuration is reached, 0 otherwise. Then, E[Vα] =

2n0 − nα
0 .

The following lemma describes the time complexity of Phase 2:

Lemma 4.4. For all ε > 0, E[T 2
n ] = O(n3/4+ε).

Sketch of the proof. Observe that pn ≥ (α + ε)(n2α
0 ) ln(n0) because pn = ω(n−1/4

√
log n).

From Lemma 4.3, it is easy to conclude that, under the hypotheses of that lemma, the
average time necessary for the extension algorithm to terminate is O(n2α

0 ). This comes from
the following observation: starting from a configuration with less than n2α

0 free vertices, the
worst-case complexity is O(n2α

0 ), since the worst-case occurs when only one vertex is covered

8



during each slot. Our upper bound of O(n2α
0 ) on the average time complexity is simply the

sum of the average time needed given by lemma 4.3 and the worst-case bound given above.
This result concerns the hypotheses of Lemma 4.3. We find ourselves however in a

case very similar to that of Lemma 4.3: we want to end up with less than nα free vertices,
starting from a configuration with

√
n initial path vertices and n−Θ(

√
n) initial free vertices,

whereas in the above lemma, we wanted to end up with less than n2α
0 free vertices, starting

with n0 initial path vertices and n2
0 initial free vertices. The only difference with the case of

Lemma 4.3 above is thus that we have here fewer initially free vertices (n − Θ(
√

n) instead
of n). It is nevertheless easy to see that the time complexity of the extension algorithm
is lower when less vertices need to be covered, from which we conclude that the bound of
O(n2α

0 ) = O(nα) = O(n3/4+ε) still holds.
Finally, E[Diam(G(n, pn))] must be added to the complexity, because of the wave al-

gorithm launched by the initiator at the end of phase is linear with diameter of the con-
nected component. The former term, however, dominates this time, which, by Lemma 4.2, is
o
(
n1/4

√
log n

)
.

In order to analyze Phase 3, we first compute a bound on the cost of patching a fixed
path to the cycle. Afterward, we shall compute a bound on the total cost of the parallel
patching of all paths.

Lemma 4.5. Let TP be the random variable that denotes the time necessary to patch a path
or a vertex to a cycle of any length by our algorithm. Then, E[TP ] = O (1/p2

n).

Sketch of the proof. Let C1, C2, . . . , Cl be the vertices in the cycle. It is easy to see that the
probability of success of one patching trial is p2

n for a vertex and 2p2
n − p4

n for a path. The
probability of success being lower for a vertex, it is clear that the average complexity of the
patching of a vertex is an upper bound for the average complexity of the patching of a path.
We further bound the time complexity for the patching of a vertex by our algorithm by the
time complexity of the following algorithm: Perform alternate patching trials at the edges of
the cycle, i.e. instead of making patching trials at cycle edges C1, C2, . . . , Cl, it only does so
at edges C2k+1C2k+2, for integer k. It is further easy to see that the cost of this algorithm is
upper bounded by two times a truncated geometric random variable of parameter p2

n. Finally,
we bound the mean of the truncated geometric variable by the mean of a complete geometric
variable, yielding a final bound of 2/p2

n for E[TP ].

For the proof of the total time complexity of Phase 3, we shall make use of the following
probabilistic result:

Lemma 4.6. Let Sm be the supremum of m independent and identically distributed geo-
metric variables having parameter p = 2m−1 ln m. We have:

E[Sm] ∼ m

2

(
1 +

γ

ln m

)
,

where γ is Euler’s constant (0.577...).

Sketch of the proof. The full proof is omitted but, in short, we prove the convergence of Sm to
a Gumbel distribution, we compute the rate of convergence, and we analyze the convergence
of moments.

9



The following lemma gives our final result concerning the time complexity of Phase 3:

Lemma 4.7. E[T 3
n ] = O (

√
n).

Proof. Let k be the number of paths we need to patch. Let W1, . . . ,Wk be the instants of
the last patching trial, for each one of the k paths (instants are counted relative to the the
beginning of Phase 3) and let T 1

P , . . . , T k
P be the durations of the patching trials, for each

path. Observe that Wi = 3i + T i
P for all i. Moreover, according to Lemma 4.5, we have

E[T i
P ] = O(1/p2

n). As T 3
n = supk

i=1 Wi, we get:

E
[
T 3

n

]
= E

[
k

sup
i=1

Wi

]
< E

[
k

sup
i=1

Vi

]
+ O

(√
n
)

< 2E

[
2
√

n
sup
i=1

geomi

(
p2

n

)]
+ O

(√
n
)

= 2E

[
2
√

n
sup
i=1

geomi

(
ω

(
n−

1
2 log n

))]
+ O

(√
n
)

< 2E

[
2
√

n
sup
i=1

geomi

(
n−

1
2 log n

)]
+ O

(√
n
)

= 2E

[
m=2

√
n

sup
i=1

geomi

((m

2

)−1

log

((m

2

)2
))]

+ O
(√

n
)

< 2E

[
m

sup
i=1

geomi

(
2m−1 log m

)]
+ O

(√
n
)

= O
(√

n
)
.

The last equality is obtained using Lemma 4.6.

The running time of the termination waves is characterized by the next result:

Lemma 4.8. E[T 4
n ] = o

(
n1/4

√
log n

)
.

Proof. Observe that T 4
n includes the time complexities of the Θ(n) waves performed at the

end of Phase 3 as well as the final result wave. We shall bound the average-case complexity of
Phase 4 by its worst-case complexity. Also, remark that the cost of all Θ(

√
n) performed at

the end of Phase 3 is bounded by the cost of the last of these waves, since the time complexity
of several parallel waves in a synchronous network is the same as that of one wave. Since
the worst-case cost of our wave is O(Diam(G(n, pn))), by Lemma 4.2, we get the desired
result.

Our main theorem follows now from Lemmata 4.1, 4.4, 4.7 and 4.8:

Theorem 4.9. Let Tn be the random variable denoting the execution time of the distributed
algorithm for a G(n, pn) random graph with pn = ω(n−1/4

√
log n). Then, for all ε > 0,

E[Tn] = O(n3/4+ε).

5 Conclusion

In this paper we have presented a randomized distributed algorithm to find Hamiltonian cycles
of graphs. It’s analysis on the standard model of G(n, pn) random binomial graphs with pn =
ω(
√

log n/n1/4) shows that the algorithm delivers Hamiltonian cycles with high probability

10



and that it’s expected running time (measured as number of pulses) is sub-linear. Also, the
number of computation steps performed in each pulse on any node is not unreasonable: linear
at most.

In order to analyze our distributed algorithm, we have presented it in a synchronous
setting. We note, however, that the algorithm can easily be reformulated in an asynchronous
environment, retaining its correctness. In this asynchronous setting, however, our analysis
(both for the probability of success and for the expected running time) would be invalid.

One can wonder how tight is the asymptotic expected running time we have computed.
Let us note that the best-case complexity for covering the whole graph by extending

√
n

disjoint paths is Θ(
√

n). This bottleneck clearly shows that our average-case complexity is
Ω(
√

n). However, in the proof of Lemma 4.4, we have used a very rough worst-case bounding
approach for the second part of the extension. The result for the average complexity of
Phase 2 could thus certainly be much improved. Another obvious open problem is to design
alternative distributed algorithms which could find Hamiltonian cycles in G(n, pn) graphs
with lower edge probabilities than ω(

√
log n/n1/4)

Many distributed algorithms have been proposed to cope with graph theoretic problems.
However, only a few studies have concentrated in probabilistic analysis where the subjacent
topology is given by a random distribution, as opposed to studies on distributed algorithms
on fixed topologies (cliques, hypercubes, trees, etc). This new kind of results may be of
use in the design and analysis of the emerging global systems resulting from the integra-
tion of autonomous interacting entities, faulty or dynamic links and ad-hoc mobile networks
where wireless and mobile networks have a dominating role. For instance, the algorithm we
have proposed can be used in order to get a distributed solution to find Hamiltonian cycles
in random geometric networks with edge faults, which can model sensor networks (see [9]
and [4]).

Acknowledgments. The authors would like to thank Stefan Langerman, Jean Cardinal,
Christian Lavault and Josep Dı́az for their precious comments.

References

[1] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and
matchings. Journal of Computer and System Sciences, 18:155–193, 1979.

[2] B. Bollobás. Random graphs. Academic Press, London, second edition, 2001.

[3] B. Bollobás, T. I. Fenner, and A. M. Frieze. An algorithm for finding Hamilton paths
and cycles in random graphs. Combinatorica, 7(4):327–341, 1987.

[4] J. Dı́az, J. Petit, and M. Serna. Faulty random geometric networks. Parallel Processing
Letters, 10(4):343–357, 2001.

[5] A. Frieze. Parallel algorithms for finding hamilton cycles in random graphs. Information
Processing Letters, 25:111–117, 1987.

[6] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. Freeman and Company, 1979.

11



[7] Y. Gurevich and S. Shelah. Expected computation time for hamiltonian path problem.
SIAM Journal on Computing, 16(3):486–502, 1987.

[8] S. Janson, T. ÃLuczak, and A. Rucinski. Random graphs. Wiley, New York, 2000.

[9] E. Levy. Distributed algorithms for finding hamilton cycles in faulty random geo-
metric graphs. Mémoire de licence (master’s thesis), Université Libre de Bruxelles,
http://www.ulb.ac.be/di/scsi/elevy/, 2002.

[10] E. Levy. Analyse et conception d’un algorithme de cycle hamiltonien pour
graphes aléatoires du type g(n, p). Mémoire de DEA, Ecole Polytechnique, Paris,
http://www.ulb.ac.be/di/scsi/elevy/, 2003.

[11] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, 1996.

[12] S. Nikoletseas and P. Spirakis. Efficient communication establishment in adverse com-
munication environments. In J. Rolim, editor, ICALP Workshops 2000, volume 8 of
Proceedings in Informatics, pages 215–226, Canada, 2000. Carleton Scientific.

[13] E. Shamir. How many random edges make a graph hamiltonian? Combinatorica,
3(1):123–131, 1983.

[14] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, second
edition, 2000.

[15] A. G. Thomason. A simple linear expected time algorithm for finding a hamilton path.
Discrete Mathetmatics, 75:373–379, 1989.

12


