19,892 research outputs found

    AGGREGATE STABILITY AND WATER RETENTION NEAR SATURATION CHARACTERISTICS AS AFFECTED BY SOIL TEXTURE, AGGREGATE SIZE AND POLYACRYLAMIDE APPLICATION

    Get PDF
    Understanding the effects of soil intrinsic properties and extrinsic conditions on aggregate stability is essential for the development of effective soil and water conservation practices. Our objective was to evaluate the combined role of soil texture, aggregate size and application of a stabilizing agent on aggregate and structure stability indices (composite structure index [SI], the and n parameters of the VG model and the S-index) by employing the high energy (0-5.0 J kg(-1)) moisture characteristic (HEMC) method. We used aggregates of three sizes (0.25-0.5, 0.5-1.0 and 1.0-2.0 mm) from four semi-arid soils treated with polyacrylamide (PAM). An increase in SI was associated with the increase in clay content, aggregate size and PAM application. The value of increased with the increase in aggregate size and with PAM application but was not affected by soil texture. For each aggregate size, a unique exponential type relationship existed between SI and . The value of n and the S-index tended, generally, to decrease with the increase in PAM application; however, an increase in aggregate size had an inconsistent effect on these two indices. The relationship between SI and n or the S-index could not be generalized. Our results suggest that (i) the effects of PAM on aggregate stability are not trivial, and its application as a soil conservation tool should consider field soil condition, and (ii), n and S-index cannot replace the SI as a solid measure for aggregate stability and soil structure firmness when assessing soil conservation practices

    Hysteresis Switching Loops in Ag-manganite memristive interfaces

    Full text link
    Multilevel resistance states in silver-manganite interfaces are studied both experimentally and through a realistic model that includes as a main ingredient the oxygen vacancies diffusion under applied electric fields. The switching threshold and amplitude studied through Hysteresis Switching Loops are found to depend critically on the initial state. The associated vacancy profiles further unveil the prominent role of the effective electric field acting at the interfaces. While experimental results validate main assumptions of the model, the simulations allow to disentangle the microscopic mechanisms behind the resistive switching in metal-transition metal oxide interfaces.Comment: 14 pages, 3 figures, to be published in Jour. of Appl. Phy

    Structure and spatial distribution of Ge nanocrystals subjected to fast neutron irradiation

    Get PDF
    The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC) embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS), High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The irradiation of NC-Ge samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 800 deg. C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of NC-Ge changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region

    Boulder Bands on Lobate Debris Aprons: Does Spatial Clustering Reveal Accumulation History for Martian Glaciations?

    Get PDF
    Glacial landforms such as lobate debris aprons (LDA) and Concentric Crater Fill (CCF) are the dominant debris-covered glacial landforms on Mars. These landforms represent a volumetrically significant component of the Amazonian water ice budget, however, because small craters (diameter D 0.5-1 km) are poorly retained glacial brain terrain surfaces, and, since the glacial landforms are geologically young, it is challenging to reliably constrain either individual glacial deposit ages or formational sequences in order to determine how quickly the glaciers accumulated. A fundamental question remaining is whether ice deposition and flow that formed LDA occurred episodically during a few, short instances, or whether glacial flow was quasi-continuous over a long period (~108 yr). Because glaciation is thought to be controlled largely by obliquity excursions, a larger question is whether glacial deposits on Mars exhibit regional to global characteristics that can be used to infer synchronicity of flow or degradation

    A computational scheme to evaluate Hamaker constants of molecules with practical size and anisotropy

    Get PDF
    We propose a computational scheme to evaluate Hamaker constants, AA, of molecules with practical sizes and anisotropies. Upon the increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves for such molecules to extract the constants, we discussed how to treat the averaging over anisotropy and how to correct the bias due to the non-additivity. We have developed a computational procedure for dealing with the anisotropy and reducing statistical errors and biases in DMC valuations, based on possible validations on predicted AA. We applied the scheme to cyclohexasilane molecule, Si6_6H12_{12}, used in 'printed electronics' fabrications, getting A105±2A \sim 105 \pm 2 [zJ], being in plausible range supported even by other possible extrapolations. The scheme provided here would open a way to use handy {\it ab initio} evaluations to predict wettabilities as in the form of materials informatics over broader molecules.Comment: The manuscript was revised according to review comment

    Evidences of a consolute critical point in the Phase Separation regime of La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals

    Full text link
    We report on DC and pulsed electric field sensitivity of the resistance of mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals as a function of temperature. The low temperature regime of the resistivity is highly current and voltage dependent. An irreversible transition from high (HR) to a low resistivity (LR) is obtained upon the increase of the electric field up to a temperature dependent critical value (V_c). The current-voltage characteristics in the LR regime as well as the lack of a variation in the magnetization response when V_c is reached indicate the formation of a non-single connected filamentary conducting path. The temperature dependence of V_c indicates the existence of a consolute point where the conducting and insulating phases produce a critical behavior as a consequence of their separation.Comment: 5 pages, 6 figures, corresponding author: C. Acha ([email protected]

    Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    Full text link
    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The signal size obtained from electrons crossing the stack at this voltage is about 22000 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20 % in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.Comment: 13 pages, 7 figures, 3 table
    corecore