655 research outputs found

    Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling.

    Get PDF
    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment

    Increased accuracy of ligand sensing by receptor internalization

    Full text link
    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.Comment: 9 pages, 4 figures, accepted for publication in Physical Review

    Generalized Jacobi identities and ball-box theorem for horizontally regular vector fields

    Full text link
    We consider a family of vector fields and we assume a horizontal regularity on their derivatives. We discuss the notion of commutator showing that different definitions agree. We apply our results to the proof of a ball-box theorem and Poincar\'e inequality for nonsmooth H\"ormander vector fields.Comment: arXiv admin note: material from arXiv:1106.2410v1, now three separate articles arXiv:1106.2410v2, arXiv:1201.5228, arXiv:1201.520

    Tyrphostins that suppress the growth of human papilloma virus 16‐immortalized human keratinocytes

    Get PDF
    ABSTRACT Human papilloma virus 16 (HPV16) is considered to be the causative agent for cervical cancer, which ranks second to breast cancer in women's malignancies. In an attempt to develop drugs that inhibit the malignant transformation of HPV16-immortalized epithelial cells, we examined the effect of tyrphostins on such cells. We examined the effect of tyrphostins from four different families on the growth of HPV16-immortalized human keratinocytes (HF-1) cells. We found that they alter their cell cycle distribution, their morphology, and induce cell death by apoptosis. The effects of tyrphostins on HF-1 cells are different from their effects on normal keratinocytes. Growth suppression by AG555 and AG1478 is accompanied by 30% apoptosis in HF-1 cells, but this is not observed in normal keratinocytes. Tyrphostin treatment produces distinctive morphological changes in HF-1 cells and in normal keratinocytes; however, the culture organization of normal keratinocytes is less disrupted. These differential effects of the tyrphostins on HPV16-immortalized keratinocytes compared with their effects on normal keratinocytes suggests that these compounds are suitable candidates for the treatment of papilloma. Previous and present results indicate that group 1 tyrphostins, which inhibit Cdk2 activation, and group 2 tyrphostins, represented by AG1478, a potent epidermal growth factor receptor kinase inhibitor, induce cell cycle arrest; and, in the case of HF-1 cells, apoptosis and differentiation. Cells accumulate in the G 1 phase of the cell cycle at the expense of S and G 2 ϩ M. These compounds block the growth of normal keratinocytes without inducing apoptosis or differentiation, causing them to accumulate in G 1 . AG17, which belongs to group 4, exerts its antiproliferative effect mainly by increasing the fractions of cells in G 1 with a concomitant decrease in the fraction of cells in S and G 2 ϩ M

    Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF)

    Get PDF
    Adipocytes isolated from cachectic mice bearing the MAC 16 tumour showed over a 3-fold increase in lipolytic response to both low concentrations of isoprenaline and a tumour-derived lipid mobilizing factor (LMF). This was reflected by an enhanced stimulation of adenylate cyclase in plasma membrane fractions of adipocytes in the presence of both factors. There was no up-regulation of adenylate cyclase in response to forskolin, suggesting that the effect arose from a change in receptor number or G-protein expression. Immunoblotting of adipocyte membranes from mice bearing the MAC16 tumour showed an increased expression of Gαs up to 10% weight loss and a reciprocal decrease in Gα. There was also an increased expression of Gαs and a decrease in Gα in adipose tissue from a patient with cancer-associated weight loss compared with a non-cachectic cancer patient. The changes in G-protein expression were also seen in adipose tissue of normal mice administered pure LMF as well as in 3T3L1 adipocytes in vitro. The changes in G-protein expression induced by LMF were attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). This suggests that this tumour-derived lipolytic factor acts to sensitize adipose tissue to lipolytic stimuli, and that this effect is attenuated by EPA, which is known to preserve adipose tissue in cancer cachexia. © 2001 Cancer Research Campaig

    Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    Get PDF
    BACKGROUND: The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. METHODS: AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. RESULTS: Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC(50 )was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. CONCLUSION: EGFR pathway components were qualified as targets for inhibition of AP-1 activation using RNAi and small molecule inhibitors. The combination of these two targeted agents was shown to increase the efficacy of EGFR and MEK-1 kinase inhibitors, leading to possible implications for overcoming or preventing drug resistance, lowering effective drug doses, and providing new strategies for interrogating cellular signalling pathways

    Tyrphostins reduce chemotherapy-induced intestinal injury in mice: assessment by a biochemical assay

    Get PDF
    Intestinal injury that results from chemotherapy belongs to the major factors of dose-limitation in tumour therapy. The tyrphostins AG1714 and AG1801 reduce cisplatin and 5-FU-induced small intestinal mucosal damage, using a quantitative biochemical assay. The assay is based on the determination of the enzymatic activity of gamma-glutamyl transpeptidase, a marker of the brush border epithelium of the small intestine

    Targeting the EGFR in ovarian cancer with the tyrosine kinase inhibitor ZD1839 (“Iressa”).

    Get PDF
    The modulating effects of the orally active epidermal growth factor receptor-specific tyrosine kinase inhibitor ZD 1839 (‘Iressa’) on cell growth and signalling were evaluated in four ovarian cancer cell lines (PE01, PE04, SKOV-3, OVCAR-5) that express the epidermal growth factor receptor, and in A2780, which is epidermal growth factor receptor-negative. Transforming growth factor-α stimulated growth was completely inhibited by concentrations of ZD 1839 ⩾0.3 μM in the epidermal growth factor receptor-expressing cell lines, as were transforming growth factor-α stimulated phosphorylation of the epidermal growth factor receptor and downstream components of the MAP kinase and PI-3 kinase signalling cascades. Growth inhibition in the absence of added transforming growth factor-α was also observed which could be consistent with suppression of action of autocrine epidermal growth factor receptor-activating ligands by ZD 1839. In support of this, transforming growth factor-α, EGF and amphiregulin mRNAs were detected by RT–PCR in the epidermal growth factor receptor-expressing cell lines. ZD 1839 inhibited growth of the PE04 ovarian cancer xenograft at 200 mg kg(−1) day(−1). These data lend further support to the view that targeting the epidermal growth factor receptor in ovarian cancer could have therapeutic benefit. British Journal of Cancer (2002) 86, 456–462. DOI: 10.1038/sj/bjc/6600058 www.bjcancer.com © 2002 The Cancer Research Campaig

    Photoactivatable prodrugs of antimelanoma agent Vemurafenib

    Get PDF
    In this study, we report on novel photoactivatable caged prodrugs of vemurafenib. This kinase inhibitor was the first approved drug for the personalized treatment of BRAF-mutated melanoma and showed impressive results in clinical studies. However, the occurrence of severe side effects and drug resistance illustrates the urgent need for innovative therapeutic approaches. To conquer these limitations, we implemented photoremovable protecting groups into vemurafenib. In general, this caging concept provides spatial and temporal control over the activation of molecules triggered by ultraviolet light. Thus, higher inhibitor concentrations in tumor tissues might be reached with less systemic effects. Our study describes the first development of caged vemurafenib prodrugs useful as pharmacological tools. We investigated their photochemical characteristics and photoactivation. <i>In vitro</i> evaluation proved the intended loss-of-function and the light-dependent recovery of efficacy in kinase and cellular assays. The reported vemurafenib photo prodrugs represent a powerful biological tool for novel pharmacological approaches in cancer research
    corecore