10,219 research outputs found

    Charge-starved, relativistic jets and blazar variability

    Full text link
    High energy emission from blazars is thought to arise in a relativistic jet launched by a supermassive black hole. The emission site must be far from the hole and the jet relativistic, in order to avoid absorption of the photons. In extreme cases, rapid variability of the emission suggests that structures of length-scale smaller than the gravitational radius of the central black hole are imprinted on the jet as it is launched, and modulate the radiation released after it has been accelerated to high Lorentz factor. We propose a mechanism which can account for the acceleration of the jet, and for the rapid variability of the radiation, based on the propagation characteristics of large-amplitude waves in charge-starved, polar jets. Using a two-fluid (electron-positron) description, we find the outflows exhibit a delayed acceleration phase, that starts at roughly 1pc, where the inertia associated with the wave currents becomes important. The time-structure imprinted on the jet at launch modulates photons produced by the accelerating jet provided the pair multiplicity in the black-hole magnetosphere is sufficiently small, suggesting that very rapid variability is confined to sources in which the electromagnetic cascade in the black-hole magnetosphere is not prolific.Comment: 8 pages, 1 figure. Momentum equation corrected. Conclusions unchanged. Erratum submitted to Ap

    A Compact Fireball Model of Gamma Ray Bursts

    Get PDF
    It is proposed that the gamma ray burst photons near the peak of the spectrum at several hundred KeV are produced on very compact scales, where photon production is limited by blackbody effects and/or the requirement of energetic quanta (E>2mec2E>2m_e c^2) for efficient further production. The fast variation of order milliseconds in the time profile is then a natural expectation, given the other observed GRB parameters. Analytic calculations are presented to show that the escape of non-thermal, energetic gamma rays can emerge within a second of the thermal photons from a gammasphere of below 101210^{12} cm. The minimum asymptotic bulk Lorentz factor in this model is found to be of order several hundred if the photosphere is of order 3×10113 \times 10^{11} cm and greater for larger or smaller photospheric radii. It is suggested that prompt UHE gamma rays might provide a new constraint on the asymptotic Lorentz factor of the outflow.Comment: To appear in ApJ, revisions requested by the refere

    Scattering by a contact potential in three and lower dimensions

    Get PDF
    We consider the scattering of nonrelativistic particles in three dimensions by a contact potential Ω2δ(r)/2μrα\Omega\hbar^2\delta(r)/ 2\mu r^\alpha which is defined as the a0a\to 0 limit of Ω2δ(ra)/2μrα\Omega\hbar^2\delta(r-a)/2\mu r^\alpha. It is surprising that it gives a nonvanishing cross section when α=1\alpha=1 and Ω=1\Omega=-1. When the contact potential is approached by a spherical square well potential instead of the above spherical shell one, one obtains basically the same result except that the parameter Ω\Omega that gives a nonvanishing cross section is different. Similar problems in two and one dimensions are studied and results of the same nature are obtained.Comment: REVTeX, 9 pages, no figur

    Quantum dot dephasing by edge states

    Full text link
    We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions between the electron in the dot and electrons in a nearby voltage biased ballistic nanostructure. The dephasing is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the resonant transmission through the dot is suppressed

    The Strong Levinson Theorem for the Dirac Equation

    Full text link
    We consider the Dirac equation in one space dimension in the presence of a symmetric potential well. We connect the scattering phase shifts at E=+m and E=-m to the number of states that have left the positive energy continuum or joined the negative energy continuum respectively as the potential is turned on from zero.Comment: Submitted to Physical Review Letter

    The absorption spectrum around nu=1: evidence for a small size Skyrmion

    Full text link
    We measure the absorption spectrum of a two-dimensional electron system (2DES) in a GaAs quantum well in the presence of a perpendicular magnetic field. We focus on the absorption spectrum into the lowest Landau Level around nu=1. We find that the spectrum consists of bound electron-hole complexes, trion and exciton like. We show that their oscillator strength is a powerful probe of the 2DES spatial correlations. We find that near nu=1 the 2DES ground state consists of Skyrmions of small size (a few magnetic lengths).Comment: To be published in Phys Rev Lett. To be presented in ICSP2004, Flagstaff, Arizona. 4 figures (1 of them in color). 5 page

    Higher order correction to the neutrino self-energy in a medium and its astrophysical applications

    Get PDF
    We have calculated the 1/M^4 (M the vector boson mass) order correction to the neutrino self-energy in a medium. The possible application of this higher order contribution to the neutrino effective potential is considered in the context of the Early Universe hot plasma and of the cosmological Gamma Ray Burst fireball. We found that, depending on the medium parameters and on the neutrino properties (mixing angle and mass square difference) the resonant oscillation of active to active neutrinos is possible.Comment: 10 pages, revtex style, uses axodraw.sty, 1 figur

    Extrapolation of K to \pi\pi decay amplitude

    Full text link
    We examine the uncertainties involved in the off-mass-shell extrapolation of the KππK\rightarrow \pi\pi decay amplitude with emphasis on those aspects that have so far been overlooked or ignored. Among them are initial-state interactions, choice of the extrapolated kaon field, and the relation between the asymptotic behavior and the zeros of the decay amplitude. In the inelastic region the phase of the decay amplitude cannot be determined by strong interaction alone and even its asymptotic value cannot be deduced from experiment. More a fundamental issue is intrinsic nonuniqueness of off-shell values of hadronic matrix elements in general. Though we are hampered with complexity of intermediate-energy meson interactions, we attempt to obtain a quantitative idea of the uncertainties due to the inelastic region and find that they can be much larger than more optimistic views portray.Comment: 16 pages with 5 eps figures in REVTE

    Electron-phonon bound states in graphene in a perpendicular magnetic field

    Full text link
    The spectrum of electron-phonon complexes in a monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for calculation of the scattering amplitude near the threshold of the optical phonon emission. Our findings beyond perturbation theory show that the true spectrum near the phonon emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of αω0\alpha \omega_{0} where α\alpha is the electron-phonon coupling and ω0\omega_{0} the phonon energy.Comment: To be published in Phys. Rev. Lett., 5 pages, 3 figures, 1 tabl
    corecore