183 research outputs found
Dynamics of photoexcited carriers in graphene
The nonequilibrium dynamics of carriers and phonons in graphene is
investigated by solving the microscopic kinetic equations with the
carrier-phonon and carrier-carrier Coulomb scatterings explicitly included. The
Fermi distribution of hot carriers are found to be established within 100 fs
and the temperatures of electrons in the conduction and valence bands are very
close to each other, even when the excitation density and the equilibrium
density are comparable, thanks to the strong inter-band Coulomb scattering.
Moreover, the temporal evolutions of the differential transmission obtained
from our calculations agree with the experiments by Wang et al. [Appl. Phys.
Lett. 96, 081917 (2010)] and Hale et al. [Phys. Rev. B 83, 121404 (2011)] very
well, with two distinct differential transmission relaxations presented. We
show that the fast relaxation is due to the rapid carrier-phonon thermalization
and the slow one is mainly because of the slow decay of hot phonons. In
addition, it is found that the temperatures of the hot phonons in different
branches are different and the temperature of hot carriers can be even lower
than that of the hottest phonons. Finally, we show that the slow relaxation
rate exhibits a mild valley in the excitation density dependence and is
linearly dependent on the probe-photon energy.Comment: 9 pages, 4 figure
Are the Tails of Percolation Thresholds Gaussians ?
The probability distribution of percolation thresholds in finite lattices
were first believed to follow a normal Gaussian behaviour. With increasing
computer power and more efficient simulational techniques, this belief turned
to a stretched exponential behaviour, instead. Here, based on a further
improvement of Monte Carlo data, we show evidences that this question is not
yet answered at all.Comment: 7 pages including 3 figure
The Tails of the Crossing Probability
The scaling of the tails of the probability of a system to percolate only in
the horizontal direction was investigated numerically for correlated
site-bond percolation model for .We have to demonstrate that the
tails of the crossing probability far from the critical point have shape
where is the correlation
length index, is the probability of a bond to be closed. At
criticality we observe crossover to another scaling . Here is a scaling index describing the
central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical
change
Simple eigenvalue-self-consistent Δ ¯ G W 0 .
We show that a rigid scissors-like GW self-consistency approach, labeled here Δ ¯ G W 0 , can be trivially implemented at zero additional cost for large scale one-shot G 0 W 0 calculations. The method significantly improves one-shot G 0 W 0 and for large systems is very accurate. Δ ¯ G W 0 is similar in spirit to evGW 0 where the self-consistency is only applied on the eigenvalues entering Green's function, while both W and the eigenvectors of Green's function are held fixed. Δ ¯ G W 0 further assumes that the shift of the eigenvalues is rigid scissors-like so that all occupied states are shifted by the same amount and analogously for all the unoccupied states. We show that this results in a trivial modification of the time-dependent G 0 W 0 self-energy, enabling an a posteriori self-consistency cycle. The method is applicable for our recent stochastic-GW approach, thereby enabling self-consistent calculations for giant systems with thousands of electrons. The accuracy of Δ ¯ G W 0 increases with the system size. For molecules, it is up to 0.4-0.5 eV away from coupled-cluster single double triple (CCSD(T)), but for tetracene and hexacene, it matches the ionization energies from both CCSD(T) and evGW 0 to better than 0.05 eV. For solids, as exemplified here by periodic supercells of semiconductors and insulators with 6192 valence electrons, the method matches evGW 0 quite well and both methods are in good agreement with the experiment
Low-Frequency Noise in 4H-Silicon Carbide Junction Field Effect Transistors
Low frequency noise in 4H‐silicon carbide junction field effect transistors (JFETs) has been investigated. JFETs with a buried p + n junction gate were manufactured by CREE Research Inc. Very low noise level has been observed in the JFETs. At 300 K the value of Hooge constant α is as small as α∼10−5 and the α value can be decreased by an appropriate annealing to α∼2×10−6. It has been shown that even these extremely low noise values are determined not by the volume noise sources but by the noise at the SiC–SiO2 interface
Effect of Gate Leakage Current on Noise Properties of AlGaN/GaN Field Effect Transistors
The effect of the gate leakage current fluctuations on noiseproperties of AlGaN/GaN heterostructurefield effect transistors(HFETs) has been studied in conventional HFET structures and in AlGaN/GaN metal-oxide-semiconductorheterostructurefield effect transistors (MOS-HFETs). The comparison of the noiseproperties of conventional AlGaN/GaN HFETs and AlGaN/GaN MOS-HFETs fabricated on the same wafer, allowed us to estimate the contribution of the gate currentnoise to the HFET’s output noise. The effect of the gate current fluctuations on output noiseproperties of HFETs depends on the level of noise in the AlGaN/GaN HFETs. For the transistors with a relatively high magnitude of the Hooge parameter α∼10−3, even a relatively large leakage currentIg (Ig/Id∼10−3–10−2, where Idis the drain current) does not contribute much to the output noise. In HFETs with a relatively small values of α (α∼10−5–10−4), the contribution of the leakage current to output noise can be significant even at Ig/Id∼10−4–10−3. For such transistors, a very rapid increase of the 1/fnoise with gate bias was observed. The differences in the noise behavior can be linked to the material quality of the AlGaN and GaN layers in different types of HFETs
Comparative study of polar and semipolar (1122) InGaN layers grown by metalorganic vapour phase epitaxy
InGaN layers were grown simultaneously on (11¯22) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy.
At higher growth temperature ( 750oC), the indium content (<15%) of the (11¯22) and (0001) InGaN layers was
similar. However, for temperatures less than 750oC, the indium content of the (11¯22) InGaN layers (15 - 26%) was generally
lower than those with (0001) orientation (15 - 32%). The compositional deviation was attributed to the different
strain relaxations between the (11¯22) and (0001) InGaN layers. Room temperature photoluminescence measurements
of the (11¯22) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing
growth temperature (or increasing indium composition). The peak emission wavelength of the (11 ¯22) InGaN layers
with an indium content of more than 10% blue-shifted a constant value of (50 - 60) nm when using higher excitation
power densities. This blue-shift was attributed to band lling effects in the layers.This work was nancially supported by the EU-FP7
ALIGHT project, under agreement no. FP7-280587. This
work was also partially supported by the Programme for Research
in Third Level Institutions (PRTLI) fourth and fth cycles.
SNA acknowledges nancial support for his postgraduate
fellowship from the Iranian Ministry of Science, Research
and Technology. PJP acknowledges nancial support for his
Professorship from Science Foundation Ireland.This is the accepted manuscript. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/jap/116/15/10.1063/1.489856
- …