14,589 research outputs found

    Charge reversal of colloidal particles

    Full text link
    A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay between the solvation energies of the multivalent counterions in the bulk and near the colloidal surface. We find that the effective charge is {\it not} a monotonically decreasing function of the multivalent salt concentration. Furthermore, contrary to the previous theories, it is found that except at very low concentrations, monovalent salt hinders the charge reversal. This conclusion is in agreement with the recent experiments and simulations

    Large Scale Rapidity Correlations in Heavy Ion Collisions

    Get PDF
    We discuss particle production mechanisms for heavy ion collisions. We present an argument demonstrating how the fluctuations of the number of produced particles in a series of classical emissions can account for KNO scaling. We predict rapidity correlations in the particle production in the event by event analysis of heavy ion collisions on the rapidity scales of the order of one over the strong coupling constant.Comment: REVTeX, 13 pages, 3 figure

    Mechanism of droplet-formation in a supersonic microfluidic spray device

    Get PDF
    Spray drying is an approach employed in automotive, food, and pharmaceutical industries as a robust and cost efficient liquid atomization technique offering direct control over droplet dimensions. The majority of commercially available spray nozzles are designed for large throughput spray drying applications or uniform surface coating, but microfluidic nebulizers have recently been developed as small scale alternatives. Here, we explore the physical parameters that define the droplet size and formation under supersonic flow conditions commonly found in microfluidic spray drying systems. We examined the spray nozzle operation using high speed imaging and laser scattering measurements, which allowed us to describe the spray regimes and droplet size distributions. It was determined that by using this spray nozzle device, droplets with diameters of 4–8 μm could be generated. Moreover, we show that the supersonic de Laval nozzle model can be used to predict the average droplet size. Our approach can be used as a platform for interfacing fluid microprocessing with gas phase detection and characterization

    Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data

    Get PDF
    The rate of ice nucleation in clouds is not easily determined and large discrepancies exist between model predictions and actual ice crystal concentration measured in clouds. In an effort to improve the parameterization of ice nucleating in cloud models, we investigate the rate of heterogeneous ice nucleation under specific ambient conditions by knowing the sizes as well as two thermodynamic parameters of the ice nuclei – contact angle and activation energy. Laboratory data of freezing and deposition nucleation modes were analyzed to derive inversely the two thermodynamic parameters for a variety of ice nuclei, including mineral dusts, bacteria, pollens, and soot particles. The analysis considered the Zeldovich factor for the adjustment of ice germ formation, as well as the solute and curvature effects on surface tension; the latter effects have strong influence on the contact angle. Contact angle turns out to be a more important factor than the activation energy in discriminating the nucleation capabilities of various ice nuclei species. By extracting these thermodynamic parameters, laboratory results can be converted into a formulation that follows classical nucleation theory, which then has the flexibility of incorporating factors such as the solute effect and curvature effect that were not considered in the experiments. Due to various uncertainties, contact angle and activation energy derived in this study should be regarded as "apparent" thermodynamics parameters

    Measuring the saturation scale in nuclei

    Full text link
    The saturation momentum seeing in the nuclear infinite momentum frame is directly related to transverse momentum broadening of partons propagating through the medium in the nuclear rest frame. Calculation of broadening within the color dipole approach including the effects of saturation in the nucleus, gives rise to an equation which describes well data on broadening in Drell-Yan reaction and heavy quarkonium production.Comment: 11 pages, 5 figures, based on the talk presented by B.K. at the INT workshop "Physics at a High Energy Electron Ion Collider", Seattle, October 200

    Longitudinal effect of CD4 by cotrimoxazole use on malaria incidence among HIV‑infected Ugandan adults on antiretroviral therapy: a randomized controlled study

    Get PDF
    Background The effect of CD4 count on malaria incidence in HIV infected adults on antiretroviral therapy (ART) was assessed in the context of a randomized controlled trial on the effect of stopping cotrimoxazole (CTX). Methods This study presents a sub-analysis of the COSTOP trial (ISRCTN44723643) which was carried out among HIV-infected Ugandan adults stable on ART with CD4 counts ≥250 cells/µl. Participants were randomized (1:1) to continue CTX or stop CTX and receive matching placebo, and were followed up for a minimum of 1 year (median 2.5 years). CD4 counts were measured at baseline, 3 months and then every 6 months. Clinical malaria was defined as fever and a positive blood slide. First, the relationship between current CD4 count during follow-up and malaria among participants on placebo was examined; using random effects Poisson regression to account for repeated episodes. Second, the effect of CD4 count at enrolment, CD4 count at ART initiation, and CD4 count during follow-up on malaria, was assessed within each trial arm; to examine whether the effect of CD4 count differed by CTX use. Results 2180 participants were enrolled into the COSTOP trial. The incidence of clinical malaria was approximately four episodes/100 person years in the CTX arm and 14 episodes/100 person years in the placebo arm. There was no evidence of an association of current CD4 and clinical malaria incidence (P = 0.56), or parasitaemia levels (P = 0.24), in the placebo arm. Malaria incidence did not differ by CD4 count at ART initiation, enrolment or during follow up, irrespective of CTX use. When compared with participants in the lowest CD4 stratum, rate ratios within each trial arm were all close to 1, and P values were all above P = 0.30. Conclusions The immune status of HIV infected participants who are stable on ART as measured by CD4 count was not associated with malaria incidence and did not modify the effect of stopping CTX on malaria. The decision of whether to stop or continue CTX prophylaxis for malaria in HIV infected individuals who are stable on ART should not be based on CD4 counts alone. COSTOP trial registration number ISRCTN4472364

    Superconducting Order Parameter in Bi-Layer Cuprates: Occurrence of π\pi Phase Shifts in Corner Junctions

    Full text link
    We study the order parameter symmetry in bi-layer cuprates such as YBaCuO, where interesting π\pi phase shifts have been observed in Josephson junctions. Taking models which represent the measured spin fluctuation spectra of this cuprate, as well as more general models of Coulomb correlation effects, we classify the allowed symmetries and determine their associated physical properties. π\pi phase shifts are shown to be a general consequence of repulsive interactions, independent of whether a magnetic mechanism is operative. While it is known to occur in d-states, this behavior can also be associated with (orthorhombic) s-symmetry when the two sub-band gaps have opposite phase. Implications for the magnitude of TcT_c are discussed.Comment: 5 pages, RevTeX 3.0, 9 figures (available upon request

    Discretization Dependence of Criticality in Model Fluids: a Hard-core Electrolyte

    Full text link
    Grand canonical simulations at various levels, ζ=5\zeta=5-20, of fine- lattice discretization are reported for the near-critical 1:1 hard-core electrolyte or RPM. With the aid of finite-size scaling analyses it is shown convincingly that, contrary to recent suggestions, the universal critical behavior is independent of ζ\zeta (\grtsim 4); thus the continuum (ζ)(\zeta\to\infty) RPM exhibits Ising-type (as against classical, SAW, XY, etc.) criticality. A general consideration of lattice discretization provides effective extrapolation of the {\em intrinsically} erratic ζ\zeta-dependence, yielding (\Tc^ {\ast},\rhoc^{\ast})\simeq (0.0493_{3},0.075) for the ζ=\zeta=\infty RPM.Comment: 4 pages including 4 figure

    A new version of the HBSC Family Affluence Scale - FAS III: Scottish qualitative findings from the International FAS Development Study

    Get PDF
    A critical review of the Family Affluence Scale (FAS) concluded that FAS II was no longer discriminatory within very rich or very poor countries, where a very high or a very low proportion of children were categorised as high FAS or low FAS respectively (Currie et al. 2008). The review concluded that a new version of FAS - FAS III - should be developed to take into account current trends in family consumption patterns across the European region, the US and Canada. In 2012, the FAS Development and Validation Study was conducted in eight countries - Denmark, Greenland, Italy, Norway, Poland, Romania, Slovakia and Scotland. This paper describes the Scottish qualitative findings from this study. The Scottish qualitative fieldwork comprising cognitive interviews and focus groups sampled from 11, 13 and 15 year-old participants from 18 of the most- and least- economically deprived schools. These qualitative results were used to inform the final FAS III recommendations.Publisher PDFPeer reviewe

    A Neutral Polyampholyte in an ionic solution

    Full text link
    The behavior of a neutral polyampholyte (PAPA) chain with NN monomers, in an ionic solution, is analyzed in the framework of the full Debye-Hu¨\ddot u ckel-Bjerrum-Flory (DHBjF)(DHBjF) theory. A PAPA chain, that in addition to the neutral monomers, also contains an equal number of positively and negatively charged monomers, is dissolved in an ionic solution. For \underline{high} concentrations of salt and at high temperatures, the PAPA exists in an extended state. As the temperature is decreased, the electrostatic energy becomes more relevant and at a T=TθT=T_{\theta} the system collapses into a dilute globular state, or microelectrolyte. This state contains a concentration of salt higher than the surrounding medium. As the temperature is decreased even further, association between the monomers of the polymer and the ions of the salt becomes relevant and there is a crossover from this globular state to a low temperature extended state. For \underline{low} densities of salt, the system is collapsed for almost all temperatures and exhibits a first-order phase transition to an extended state at an unphysical low temperature.Comment: 10 pages, Revtex with epsf, 9 Postscript figures. Submitted to PR
    corecore