14,589 research outputs found
Charge reversal of colloidal particles
A theory is presented for the effective charge of colloidal particles in
suspensions containing multivalent counterions. It is shown that if colloids
are sufficiently strongly charged, the number of condensed multivalent
counterion can exceed the bare colloidal charge leading to charge reversal.
Charge renormalization in suspensions with multivalent counterions depends on a
subtle interplay between the solvation energies of the multivalent counterions
in the bulk and near the colloidal surface. We find that the effective charge
is {\it not} a monotonically decreasing function of the multivalent salt
concentration. Furthermore, contrary to the previous theories, it is found that
except at very low concentrations, monovalent salt hinders the charge reversal.
This conclusion is in agreement with the recent experiments and simulations
Large Scale Rapidity Correlations in Heavy Ion Collisions
We discuss particle production mechanisms for heavy ion collisions. We
present an argument demonstrating how the fluctuations of the number of
produced particles in a series of classical emissions can account for KNO
scaling. We predict rapidity correlations in the particle production in the
event by event analysis of heavy ion collisions on the rapidity scales of the
order of one over the strong coupling constant.Comment: REVTeX, 13 pages, 3 figure
Mechanism of droplet-formation in a supersonic microfluidic spray device
Spray drying is an approach employed in automotive, food, and pharmaceutical industries as a robust and cost efficient liquid atomization technique offering direct control over droplet dimensions. The majority of commercially available spray nozzles are designed for large throughput spray drying applications or uniform surface coating, but microfluidic nebulizers have recently been developed as small scale alternatives. Here, we explore the physical parameters that define the droplet size and formation under supersonic flow conditions commonly found in microfluidic spray drying systems. We examined the spray nozzle operation using high speed imaging and laser scattering measurements, which allowed us to describe the spray regimes and droplet size distributions. It was determined that by using this spray nozzle device, droplets with diameters of 4–8 μm could be generated. Moreover, we show that the supersonic de Laval nozzle model can be used to predict the average droplet size. Our approach can be used as a platform for interfacing fluid microprocessing with gas phase detection and characterization
Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data
The rate of ice nucleation in clouds is not easily determined and large discrepancies exist between model predictions and actual ice crystal concentration measured in clouds. In an effort to improve the parameterization of ice nucleating in cloud models, we investigate the rate of heterogeneous ice nucleation under specific ambient conditions by knowing the sizes as well as two thermodynamic parameters of the ice nuclei – contact angle and activation energy. Laboratory data of freezing and deposition nucleation modes were analyzed to derive inversely the two thermodynamic parameters for a variety of ice nuclei, including mineral dusts, bacteria, pollens, and soot particles. The analysis considered the Zeldovich factor for the adjustment of ice germ formation, as well as the solute and curvature effects on surface tension; the latter effects have strong influence on the contact angle. Contact angle turns out to be a more important factor than the activation energy in discriminating the nucleation capabilities of various ice nuclei species. By extracting these thermodynamic parameters, laboratory results can be converted into a formulation that follows classical nucleation theory, which then has the flexibility of incorporating factors such as the solute effect and curvature effect that were not considered in the experiments. Due to various uncertainties, contact angle and activation energy derived in this study should be regarded as "apparent" thermodynamics parameters
Measuring the saturation scale in nuclei
The saturation momentum seeing in the nuclear infinite momentum frame is
directly related to transverse momentum broadening of partons propagating
through the medium in the nuclear rest frame. Calculation of broadening within
the color dipole approach including the effects of saturation in the nucleus,
gives rise to an equation which describes well data on broadening in Drell-Yan
reaction and heavy quarkonium production.Comment: 11 pages, 5 figures, based on the talk presented by B.K. at the INT
workshop "Physics at a High Energy Electron Ion Collider", Seattle, October
200
Longitudinal effect of CD4 by cotrimoxazole use on malaria incidence among HIV‑infected Ugandan adults on antiretroviral therapy: a randomized controlled study
Background
The effect of CD4 count on malaria incidence in HIV infected adults on antiretroviral therapy (ART) was assessed in the context of a randomized controlled trial on the effect of stopping cotrimoxazole (CTX).
Methods
This study presents a sub-analysis of the COSTOP trial (ISRCTN44723643) which was carried out among HIV-infected Ugandan adults stable on ART with CD4 counts ≥250 cells/µl. Participants were randomized (1:1) to continue CTX or stop CTX and receive matching placebo, and were followed up for a minimum of 1 year (median 2.5 years). CD4 counts were measured at baseline, 3 months and then every 6 months. Clinical malaria was defined as fever and a positive blood slide. First, the relationship between current CD4 count during follow-up and malaria among participants on placebo was examined; using random effects Poisson regression to account for repeated episodes. Second, the effect of CD4 count at enrolment, CD4 count at ART initiation, and CD4 count during follow-up on malaria, was assessed within each trial arm; to examine whether the effect of CD4 count differed by CTX use.
Results
2180 participants were enrolled into the COSTOP trial. The incidence of clinical malaria was approximately four episodes/100 person years in the CTX arm and 14 episodes/100 person years in the placebo arm. There was no evidence of an association of current CD4 and clinical malaria incidence (P = 0.56), or parasitaemia levels (P = 0.24), in the placebo arm. Malaria incidence did not differ by CD4 count at ART initiation, enrolment or during follow up, irrespective of CTX use. When compared with participants in the lowest CD4 stratum, rate ratios within each trial arm were all close to 1, and P values were all above P = 0.30.
Conclusions
The immune status of HIV infected participants who are stable on ART as measured by CD4 count was not associated with malaria incidence and did not modify the effect of stopping CTX on malaria. The decision of whether to stop or continue CTX prophylaxis for malaria in HIV infected individuals who are stable on ART should not be based on CD4 counts alone.
COSTOP trial registration number ISRCTN4472364
Superconducting Order Parameter in Bi-Layer Cuprates: Occurrence of Phase Shifts in Corner Junctions
We study the order parameter symmetry in bi-layer cuprates such as YBaCuO,
where interesting phase shifts have been observed in Josephson junctions.
Taking models which represent the measured spin fluctuation spectra of this
cuprate, as well as more general models of Coulomb correlation effects, we
classify the allowed symmetries and determine their associated physical
properties. phase shifts are shown to be a general consequence of
repulsive interactions, independent of whether a magnetic mechanism is
operative. While it is known to occur in d-states, this behavior can also be
associated with (orthorhombic) s-symmetry when the two sub-band gaps have
opposite phase. Implications for the magnitude of are discussed.Comment: 5 pages, RevTeX 3.0, 9 figures (available upon request
Discretization Dependence of Criticality in Model Fluids: a Hard-core Electrolyte
Grand canonical simulations at various levels, -20, of fine- lattice
discretization are reported for the near-critical 1:1 hard-core electrolyte or
RPM. With the aid of finite-size scaling analyses it is shown convincingly
that, contrary to recent suggestions, the universal critical behavior is
independent of (\grtsim 4); thus the continuum RPM
exhibits Ising-type (as against classical, SAW, XY, etc.) criticality. A
general consideration of lattice discretization provides effective
extrapolation of the {\em intrinsically} erratic -dependence, yielding
(\Tc^ {\ast},\rhoc^{\ast})\simeq (0.0493_{3},0.075) for the
RPM.Comment: 4 pages including 4 figure
A new version of the HBSC Family Affluence Scale - FAS III: Scottish qualitative findings from the International FAS Development Study
A critical review of the Family Affluence Scale (FAS) concluded that FAS II was no longer discriminatory within very rich or very poor countries, where a very high or a very low proportion of children were categorised as high FAS or low FAS respectively (Currie et al. 2008). The review concluded that a new version of FAS - FAS III - should be developed to take into account current trends in family consumption patterns across the European region, the US and Canada. In 2012, the FAS Development and Validation Study was conducted in eight countries - Denmark, Greenland, Italy, Norway, Poland, Romania, Slovakia and Scotland. This paper describes the Scottish qualitative findings from this study. The Scottish qualitative fieldwork comprising cognitive interviews and focus groups sampled from 11, 13 and 15 year-old participants from 18 of the most- and least- economically deprived schools. These qualitative results were used to inform the final FAS III recommendations.Publisher PDFPeer reviewe
A Neutral Polyampholyte in an ionic solution
The behavior of a neutral polyampholyte () chain with monomers, in an
ionic solution, is analyzed in the framework of the full Debye-Hckel-Bjerrum-Flory theory. A chain, that in addition to the
neutral monomers, also contains an equal number of positively and negatively
charged monomers, is dissolved in an ionic solution. For \underline{high}
concentrations of salt and at high temperatures, the exists in an extended
state. As the temperature is decreased, the electrostatic energy becomes more
relevant and at a the system collapses into a dilute globular
state, or microelectrolyte. This state contains a concentration of salt higher
than the surrounding medium. As the temperature is decreased even further,
association between the monomers of the polymer and the ions of the salt
becomes relevant and there is a crossover from this globular state to a low
temperature extended state. For \underline{low} densities of salt, the system
is collapsed for almost all temperatures and exhibits a first-order phase
transition to an extended state at an unphysical low temperature.Comment: 10 pages, Revtex with epsf, 9 Postscript figures. Submitted to PR
- …
