289 research outputs found

    Constitutively Enhanced Lymphatic Pumping in the Upper Limbs of Women Who Later Develop Breast Cancer-Related Lymphedema.

    Get PDF
    BACKGROUND: It has previously been shown that the lymph drainage rate in both upper limbs is greater in women destined to develop breast cancer-related lymphedema (BCRL) than in those who do not develop BCRL, indicating a constitutive predisposition. We explored constitutive differences further by measuring the maximum lymphatic pump pressure (Ppump) and the rate of (99m)Tc-Nanocoll transport generated by the contractile upper limb lymphatics before and after breast cancer surgery in a group of women who were followed for 2 years to determine their eventual BCRL or non-BCRL status. METHODS AND RESULTS: Ppump and tracer transport rate were measured by lymphatic congestion lymphoscintigraphy in the ipsilateral upper limb in 26 women pre- and post-breast cancer surgery. BCRL occurred in 10/26 (38.5%) cases. Ppump in the women who later developed BCRL (40.0 ± 8.2 mmHg) was 1.7-fold higher than in those who did not develop BCRL (23.1 ± 10.8 mmHg, p = 0.001). Moreover, the rate of lymph tracer transport into the forearm was 2.2-fold greater in the women who later developed BCRL (p = 0.052). Surgery did not significantly reduce Ppump measured 21 weeks postsurgery, but impaired forearm tracer transport in pre-BCRL women by 58% (p = 0.047), although not in those who did not develop BCRL. CONCLUSIONS: Women destined to develop BCRL have higher pumping pressures and lymph transport, indicating harder-working lymphatics before cancer treatment. Axillary lymphatic damage from surgery appears to compromise lymph drainage in those women constitutively predisposed to higher lymphatic pressures and lymph transport

    Network development in biological gels: role in lymphatic vessel development

    Get PDF
    In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model

    The Morphology and Intrinsic Excitability of Developing Mouse Retinal Ganglion Cells

    Get PDF
    The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson's correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson's correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters

    Profiling of the perturbed metabolomic state of mouse spleen during acute and chronic toxoplasmosis

    Get PDF
    Background Toxoplasma gondii, a common opportunistic protozoan, is a leading cause of illness and mortality among immunosuppressed individuals and during congenital infections. Current therapeutic strategies for toxoplasmosis are not fully effective at curtailing disease progression in these cases. Given the parasite ability to influence host immunity and metabolism, understanding of the metabolic alterations in the host’s immune organs during T. gondii infection may enhance the understanding of the molecular mechanisms that define the pathophysiology of T. gondii infection. Methods We investigated the global metabolic changes in the spleen of BALB/c mice at early and late stage of infection with T. gondii using LC-MS/MS-based metabolomics. Multivariate data analysis methods, principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were used to identify metabolites that are influenced by T. gondii infection. Results Multivariate analyses clearly separated the metabolites of spleen of infected and control mice. A total of 132 differential metabolites were identified, 23 metabolites from acutely infected versus control mice and 109 metabolites from chronically infected versus control mice. Lipids, hormones, lactones, acids, peptides, antibiotics, alkaloids and natural toxins were the most influenced chemical groups. There were 12 shared differential metabolites between acutely infected versus control mice and chronically infected versus control mice, of which 4,4-Dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol was significantly upregulated and ubiquinone-8 was significantly downregulated. Major perturbed metabolic pathways included primary bile acid biosynthesis, steroid hormone biosynthesis, biotin metabolism, and steroid biosynthesis, with arachidonic acid metabolism being the most significantly impacted pathway. These metabolic changes suggest a multifactorial nature of the immunometabolic responses of mouse spleen to T. gondii infection. Conclusions This study demonstrated that T. gondii infection can cause significant metabolomic alterations in the spleen of infected mice. These findings provide new insights into the molecular mechanisms that underpin the pathogenesis of T. gondii infection

    Lymphatic density and metastatic spread in human malignant melanoma

    Get PDF
    Lymphatic density and metastatic spread in human malignant melanoma. Malignant melanoma (MM), the most common cause of skin cancer deaths, metastasises to regional lymph nodes. In animal models of other cancers, lymphatic growth is associated with metastasis. To assess if lymphatic density (LD) was increased in human MM, and its association with metastasis, we measured LD inside and around archival MM samples (MM, n = 21), and compared them with normal dermis (n = 11), basal cell carcinoma (BCC, n = 6) and Merkel cell carcinoma (MCC), a skin tumour thought to metastasise through a vascular route (MCC, n = 6). Lymphatic capillary density (mm(-2)), as determined by immunohistochemical staining with the lymphatic specific marker LYVE-1, was significantly increased around MM (10.0+/-2.5 mm(-2)) compared with normal dermis (2.4+/-0.9 mm(-2)), BCC (3.0+/-0.9 mm(-2)) and MCC (2.4+/-1.4 mm(-2)) (P<0.0001). There was a small decrease in LD inside MM (1.1+/-0.7 mm(-2)) compared with normal dermis, but a highly significant decrease in BCC (0.14+/-0.13) and MCC (0.12+/-2.4) (P<0.01 Kruskal-Wallis). Astonishingly, LD discriminated between melanomas that subsequently metastasised (12.8+/-1.6 mm(-2)) and those that did not (5.4+/-1.1 mm(-2), P<0.01, Mann-Whitney). Lymphatic invasion by tumour cells was seen mainly in MM that metastasised (70% compared with 12% not metastasising, P<0.05 Fisher's Exact test). The results show that LD was increased around MMs, and that LD and tumour cell invasion of lymphatics may help to predict metastasis. To this end, a prognostic index was calculated using LD, lymphatic invasion and thickness that clearly discriminated metastatic from nonmetastatic tumours

    Resistance of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis to nitric oxide correlates with disease severity in Tegumentary Leishmaniasis

    Get PDF
    BACKGROUND: Nitric oxide (NO(•)) plays a pivotal role as a leishmanicidal agent in mouse macrophages. NO(• )resistant Escherichia coli and Mycobacterium tuberculosis have been associated with a severe outcome of these diseases. METHODS: In this study we evaluated the in vitro toxicity of nitric oxide for the promastigote stages of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis parasites, and the infectivity of the amastigote stage for human macrophages. Parasites were isolated from patients with cutaneous, mucosal or disseminated leishmaniasis, and NO(• )resistance was correlated with clinical presentation. RESULTS: Seventeen isolates of L. (L.) amazonensis or L. (V.) braziliensis promastigotes were killed by up to 8 mM of more of NaNO(2 )(pH 5.0) and therefore were defined as nitric oxide-susceptible. In contrast, eleven isolates that survived exposure to 16 mM NaNO(2 )were defined as nitric oxide-resistant. Patients infected with nitric oxide-resistant Leishmania had significantly larger lesions than patients infected with nitric oxide-susceptible isolates. Furthermore, nitric oxide-resistant L. (L.) amazonensis and L. (V.) braziliensis multiplied significantly better in human macrophages than nitric oxide-susceptible isolates. CONCLUSION: These data suggest that nitric oxide-resistance of Leishmania isolates confers a survival benefit for the parasites inside the macrophage, and possibly exacerbates the clinical course of human leishmaniasis

    Shear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2

    Get PDF
    During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.Exposure to 8 dyn/cm(2) laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of alpha-smooth muscle actin (alpha-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH(2)O, approximately 0.05 dyn/cm(2), 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of alpha-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of alpha-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation

    Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.

    Get PDF
    Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon

    Radar vision in the mapping of forest biodiversity from space

    Get PDF
    Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data
    corecore