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RESEARCH Open Access

Profiling of the perturbed metabolomic
state of mouse spleen during acute and
chronic toxoplasmosis
Xiao-Qing Chen1,2, Chun-Xue Zhou2,3, Hany M. Elsheikha4, Shuai He2,5, Gui-Xue Hu1* and Xing-Quan Zhu2*

Abstract

Background: Toxoplasma gondii, a common opportunistic protozoan, is a leading cause of illness and mortality
among immunosuppressed individuals and during congenital infections. Current therapeutic strategies for
toxoplasmosis are not fully effective at curtailing disease progression in these cases. Given the parasite ability
to influence host immunity and metabolism, understanding of the metabolic alterations in the host’s immune
organs during T. gondii infection may enhance the understanding of the molecular mechanisms that define
the pathophysiology of T. gondii infection.

Methods: We investigated the global metabolic changes in the spleen of BALB/c mice at early and late stage
of infection with T. gondii using LC-MS/MS-based metabolomics. Multivariate data analysis methods, principal
components analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were used to identify
metabolites that are influenced by T. gondii infection.

Results: Multivariate analyses clearly separated the metabolites of spleen of infected and control mice. A total of 132
differential metabolites were identified, 23 metabolites from acutely infected versus control mice and 109 metabolites
from chronically infected versus control mice. Lipids, hormones, lactones, acids, peptides, antibiotics, alkaloids
and natural toxins were the most influenced chemical groups. There were 12 shared differential metabolites
between acutely infected versus control mice and chronically infected versus control mice, of which 4,4-Dimethyl-
5alpha-cholesta-8,14,24-trien-3beta-ol was significantly upregulated and ubiquinone-8 was significantly downregulated.
Major perturbed metabolic pathways included primary bile acid biosynthesis, steroid hormone biosynthesis,
biotin metabolism, and steroid biosynthesis, with arachidonic acid metabolism being the most significantly
impacted pathway. These metabolic changes suggest a multifactorial nature of the immunometabolic
responses of mouse spleen to T. gondii infection.

Conclusions: This study demonstrated that T. gondii infection can cause significant metabolomic alterations
in the spleen of infected mice. These findings provide new insights into the molecular mechanisms that underpin the
pathogenesis of T. gondii infection.

Keywords: Toxoplasma gondii, Spleen, Mass spectrometry, Metabolome, Non-targeted metabolomics, Pathway
enrichment analysis
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Background
Toxoplasmosis is a common opportunistic infection caused
by Toxoplasma gondii, which can infect almost all warm-
blooded vertebrate animals [1]. This parasite is also highly
zoonotic, with roughly one-third of the world population
reported to be infected [2]. Toxoplasma gondii infections of
healthy, immunocompetent individuals are usually asymp-
tomatic [3, 4]. However, T. gondii can cause significant
morbidity and mortality under certain conditions, such as
AIDS, bone marrow or solid organ transplantations, or if
infection occurs during pregnancy [3, 4]. Toxoplasma gon-
dii infection can manifest as an acute infection attributed
to the replicating tachyzoite stage, which results in signifi-
cant immune activation and systemic dissemination to vari-
ous host tissues [5]. In the presence of an effective immune
response, tachyzoites transform into slowly replicating
bradyzoites, which exist in the brain and muscle tissue
in the form of cysts and this marks the chronic phase
of the infection [6, 7]. Control of T. gondii replication
and transition to the latent form depends on cell-
mediated immunity; however, humoral immunity is also
critical for resistance to T. gondii infection [8, 9].
In recent years, the integration between what used to

be traditionally distinct fields, immunology and metabol-
ism, has spurred the emergence of a new discipline called
immune system metabolism or “immunometabolism”.
Previous studies have shown that metabolic changes in
the body are connected to immune regulation. For ex-
ample, amino acids can modulate the immune function by
regulating lymphocyte proliferation and cytokine produc-
tion [10]. Also, abnormal metabolism of phospholipids,
urea, and amino acids can trigger the immune responses
and inflammatory processes in Alzheimer’s disease [11].
Interestingly, the interaction between immunity and
metabolism has also been shown to play a key role in
the pathogenesis of T. gondii. Infection with this para-
site can evoke major metabolic reprogramming of host
cells [12, 13]. In the interim, immunoinflammation is a
common feature associated with T. gondii infection, in
the brain and peripheral circulation [14]. Also, T. gondii
employs various immunoregulatory mechanisms of
evading or subverting host defenses in order to persist
as a dormant stage and to ensure transmission to the
subsequent host [15]. These mechanisms include, for
example, alteration in the architecture of spleen, dys-
regulation of the expression of cytokines, and gener-
ation of anti-parasitic humoral immune response [16].
Surprisingly, investigation of peripheral immune organs

that could be affected by systemic perturbations occurring
during toxoplasmosis has not been addressed yet. Spleen
is a major immune organ playing a critical role in the
innate and adaptive immune responses. It is mainly made
up of red and white pulp. The white pulp includes B cell
and T cell zones, and activates specific immune responses

that protect individuals against microbial infection.
Knowledge of the metabolic composition of spleen
during T. gondii infection may reveal the underlying
molecular and immune-regulatory processes that operate
to counter T. gondii infection. Metabolomics has been a
powerful tool for the simultaneous quantitative measure-
ment of many metabolites in response of individuals or
organisms to drug treatment or other interventions [17]
or to study host-parasite interaction [18]. Liquid chroma-
tography coupled to mass spectrometry (LC-MS), includ-
ing targeted LC-MS and non-targeted LC-MS, has been
widely applied to identify and quantify metabolites [12,
13]. We previously employed non-targeted metabolomics
to assess the metabolic changes in the brain and serum of
mice at different stages of T. gondii infection [12, 13].
These studies revealed a profound impact of T. gondii on
host metabolism, with numerous pathways being affected,
and some of the most impacted pathways were related to
the metabolism of amino acids, energy metabolism and
immune signaling [13].
Given the intricate relationship between immunity and

metabolism, and given the importance of spleen in
generating anti-T. gondii immune response, metabolic
fingerprinting of spleen tissues might provide important
information about the metabolic alterations that under-
pin the immunologic responses during T. gondii infec-
tion. In this work, we hypothesized that spleen exhibits
distinct metabolomic patterns in response to T. gondii
infection, which could result in different spleen func-
tions, particularly affecting the immune response to
infection. To test this hypothesis, we investigated, for
the first time, changes in the metabolism of spleen of
mice infected with T. gondii during acute and chronic
phases of infection using non-targeted LC-MS/MS meta-
bolomics. Our findings confirmed that using LC-MS/MS-
based metabolomics coupled to chemometric methods
can provide a powerful approach for discerning metabolic
changes in the spleen of mice infected with T. gondii and
for elucidating infection stage-specific metabolic profiles.

Methods
Animal infection
Six-week-old, female, BALB/c mice were obtained from
the Laboratory Animal Center of Lanzhou Veterinary
Research Institute, Chinese Academy of Agricultural
Sciences. Mice were housed in microisolator cages under
specific-pathogen free (SPF) conditions, with controlled
temperature (22 ± 2 °C), 12 h light/ dark cycles and were
given water and standard food pellets ad libitum. Mice
(n = 39) were randomly allocated into two groups:
infected group (n = 26) and control group (n = 13).
Toxoplasma gondii type II Prugniuad (Pru) strain was
maintained in mice via oral inoculation of the parasite
cysts that were isolated from mice brain tissues 40 days
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post-infection (dpi). Each mouse in the infected group
was infected orally with 10 cysts of T. gondii Pru strain
in 100 μl phosphate buffered saline solution (PBS). Con-
trol mice were gavaged with an equivalent volume of
PBS only. All mice were observed daily throughout the
entire experiment.

Tissue collection and detection of infection
To correlate changes in spleen metabolism by stage of
infection, we collected spleen samples at 11 and 30 dpi,
which were correlated with the acute and chronic stages
of infection, respectively. In our previous studies, mice
infected with T. gondii exhibited acute clinical signs
at 7 dpi, which declined gradually until disappearing
after 21 dpi [12, 13]. Also, transcriptional changes ob-
served in T. gondii-infected mice at 10 and 28 dpi
were correlated with acute and chronic infection, respect-
ively [19]. Spleens from uninfected (control) mice were
also collected at 30 dpi. Mice were anesthetized by isoflur-
ane inhalation and sacrificed by exsanguination via car-
diac puncture. Spleen was rapidly removed, rinsed with
saline solution (0.9% NaCl w/v), snap-frozen in liquid ni-
trogen, and stored at -80 °C until analysis. Tissues from
other organs, including brain, blood, liver, lung, small in-
testine and kidney, were examined for the presence of T.
gondii, as previously described [20]. Briefly, genomic DNA
was extracted from these various tissues using
QIAamp® DNA Mini kit following the manufacturer’s
instructions (QIAGEN, Hilden, Germany). DNA was
then used as a template for PCR to amplify T. gondii
B1 gene using the specific primers (5′-AAC GGG
CGA GTA GCA CCT GAG GAG-3′ and 5′-TGG
GTC TAC GTC GAT GGC ATG ACA AC-3′). Posi-
tive control (DNA from T. gondii) and negative con-
trol (deionized water) samples were included in each
PCR run. Sections from spleens of 9 mice (3 from
each of the acutely infected, chronically infected, and
control groups) were collected and processed for rou-
tine histopathological examination. Briefly, tissues
were fixed in 10% neutral formaldehyde solution for
1 week, dehydrated in a graded series of ethanol, em-
bedded in paraffin wax, cut into 5 μm-thick serial
sections on a microtome, stained with hematoxylin-
eosin (H&E), and finally examined under an optical
microscope (Olympus, Tokyo, Japan).

Metabolite extraction
A total of 30 spleen samples were collected from two dif-
ferent infection groups (acutely infected, n = 10; chronic-
ally infected, n = 10) plus a control group (n = 10).
Samples were gradually transferred from -80 °C to -20 °C
and then to 4 °C. The organic protein precipitation method
was used to extract metabolites. Briefly, 25 mg splenic tis-
sues that were collected from a homogenous mixture of

the whole spleen were ground in a mortar in liquid nitro-
gen. Then, 800 μl methanol/water (1:1) solution and 3 mm
(mean diameter) steel beads were added to each sample.
Using a TissueLyser bead-mill homogenizer (Qiagen,
Hilden, Germany), samples were homogenized via
vibrating at 60 Hz for 5 min. Subsequently, samples
were centrifuged at 25,000× g for 10 min at 4 °C.
The supernatant of each sample was separated and
freeze-dried. Also, 200 μl supernatant of each sample
were pooled and used as quality control (QC) sam-
ples. Finally, freeze-dried samples were reconstituted,
and subjected to mass spectrometry analysis.

LC-MS/MS analysis
Unbiased metabolomics analysis was performed using an
ultra-performance liquid chromatography (UPLC) system
(Waters, Milford, USA). The chromatographic separation
was carried out using an ACQUITY UPLC BEH C18 col-
umn (100 mm × 2.1 mm, 1.7 μm, Waters) with a column
temperature of 50 °C and a flow rate of 0.4 ml/min, where
the mobile phase contained solvent A (water +0.1% formic
acid) and solvent B (acetonitrile +0.1% formic acid). Me-
tabolites were eluted using the following gradient elution
conditions: 100% phase A for 0–2 min; 0–100% phase B
for ~11 min; 100% phase B for 11–13 min; 100% Phase A
for 13–15 min. The loading volume of each sample was
10 μl. The metabolites eluted from the column were de-
tected by a high-resolution tandem mass spectrometer
SYNAPT G2 XS QTOF (Waters) in positive and negative
ion modes. For positive ion mode, the capillary voltage
and the cone voltage were set at 2 kV and 40 V, respect-
ively. For negative ion mode, they were 1 kV and 40 V, re-
spectively. Centroid MSE mode was used to collect the
mass spectrometry data. The primary scan ranged from
50 to 1200 Da and the scanning time was 0.2 s. All the
parent ions were fragmented using 20–40 eV. The infor-
mation of all fragments were collected and the time was
0.2 s. In the data acquisition process, the LE signal was
gained every 3 s for real-time quality correction. Fur-
thermore, quality control samples (10 samples) were
collected to evaluate the stability of the instrument
during measurements.

Multivariate statistical analysis
The raw mass spectrometry data were processed, ex-
tracted and the peaks were identified. This procedure
involved chromatogram alignment, peak picking, peak
area extraction and normalization by commercial soft-
ware progenesis QI (version 2.2) implementation.
Multivariate statistical analyses (principal components
analysis, PCA; partial least squares-discriminant analysis,
PLS-DA) were performed to discriminate infected mice
from control mice. PLS-DA has been widely used in high-
dimensional data analysis, especially in the field of
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metabolomics to maximize group separation [21, 22]. Dif-
ferentially expressed metabolites were identified on the
basis of variable importance in the projection (VIP)
threshold ≥ 1 from the PLS-DA model and P-values
obtained from a two-tailed, Student’s t-test on the
normalized peak areas < 0.05. The values of R2 and
Q2 parameters were used to verify the fitness and
predictive ability of the model. Fold change (FC) was
set to be ≥ 1.2 or ≤ 0.8333. Log2 FC based on metab-
olite abundance was used to assess the levels of vari-
ation of the differential metabolites between various
mouse groups. Data converted to log2 format were
used in cluster analysis and generation of heat-maps
to show the distinction in the metabolic state between
infected mice and controls, and between infected
mice at different stages of infection.

Metabolite identification and pathway analysis
We used the online HMDB (http://www.hmdb.ca/) and
KEGG (www.genome.jp/kegg/) databases to identify the
metabolites by matching the exact molecular mass data
(m/z) of samples with those from the database. If a mass
difference between the observed value and the database
value was less than 10 ppm, the metabolite would be iden-
tified and the molecular formula of the metabolites would
further be validated by the isotopic distribution measure-
ment. Reference standards were used to validate and con-
firm those significantly changed metabolites by comparing
their MS/MS spectra and retention times. Metabolic en-
richment analysis was performed to identify and visualize
the affected pathway in T. gondii-infected mice using the
MetPA web tool (http://www.metaboanalyst.ca/) [23].

Results
Toxoplasma gondii infection in mice
Infected mice exhibited mild clinical signs, such as loss
of appetite and ruffled hair coat at 7 dpi. These signs
progressed and became more evident at 11 dpi, correlat-
ing with the acute stage of infection. However, mice
began to recover after ~14 dpi and by 30 dpi all mice
had developed chronic infection. Therefore, 11 dpi and
30 dpi were selected to represent the acute and chronic
phases of infection, respectively. Infection was confirmed
in all infected mice by positive PCR results. By contrast,
mice in the control group appeared normal and yielded
negative PCR results. Histopathology showed spleno-
megaly in the acutely infected mice (Fig. 1a), but slightly
less enlargement in the spleen of chronically infected
mice (Fig. 1b). A reduction in the white pulp, but an
expansion of the red pulp was observed in the spleen of
acutely infected mice (Fig. 1c). By contrast, white pulp
hyperplasia with nonreactive red pulp was less prominent
in the spleen during chronic infection (Fig. 1d). Spleens of
control, uninfected, mice did not show any gross anatom-
ical or histopathological abnormalities (Fig. 1a, b, e).

Metabolic profiles of mouse groups
Mass spectrometry data were analyzed by multivariate
statistics to discriminate infected mice from controls.
There were 5308 and 6641 molecular features; relative
standard deviation (RSD) ≤ 30% ion number of 3702 and
4408; and ratio of 78.30 and 75.08% detected in the posi-
tive electrospray ionization (ESI+) mode and negative
(ESI-) mode, respectively. Next, we analyzed RSD ≤ 30%
ion chromatograms. The total ion chromatograms (TIC)
overlap and the PCA scores plot representation of QC

Fig. 1 Gross and histopathological characteristics of spleen of mice infected with Toxoplasma gondii. a The spleen of mice during acute infection
(AI) was enlarged compared to normal spleen size of mice in the control group (Con). b Mouse spleen during chronic infection (CI) showing slight
splenomegaly compared to control (Con) mice. c Histopathology of spleen from acutely infected mouse showing a reduction in the white pulp with
an expansion of the red pulp compartment. d Spleen of a chronically infected mouse showing regression of white pulp and red pulp. e Spleen of a
healthy mouse showing no histopathological abnormalities. Scale-bars: c-e, 12.5 μm
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samples were performed and confirmed the repeatability
and stability of the mass spectrometry measurement, as
shown in Fig. 2 (ESI+) and Additional file 1: Figure S1
(ESI-). However, the PCA scores plot did not show any
clear separation between the infected and control mice.
To better elucidate the metabolic differences, PLS-DA
analysis was performed and the score plots are displayed
in Fig. 3a, b (ESI+) and Additional file 2: Figure S2 a, b
(ESI-). The PLS-DA model of acutely infected vs control
(R2 = 0.913, Q2 = 0.5136, ESI+; R2 = 0.9237, Q2 = 0.4026,
ESI-) and chronically infected vs control (R2 = 0.867,
Q2 = 0.5184, ESI+; R2 = 0.8848, Q2 = 0.3388, ESI-) showed
a high degree of segregation between the mouse groups.
The parameters R2 and Q2 confirmed the validity of the
model. Also, the score plots showed clear discrimination
between different infected mouse groups and the control
group in both the positive and negative electrospray
ionization modes.

Differential abundance of metabolites by infection phases
The differential metabolites between different mouse
groups were categorized according to the stage of infec-
tion. The results (Additional file 3: Table S1) show the
upregulated and downregulated metabolites between dif-
ferent mouse groups. These differential metabolites be-
tween different mouse groups were used for clustering
analysis and heatmaps, as shown in Fig. 3c, d (ESI+) and
Additional file 2: Figure S2c, d (ESI-). The heatmaps
showed a clear difference between acutely infected mice
and control mice. Although there was an outlier data
point in acutely infected mice in the negative ion mode
(Additional file 2: Figure S2a), the same data point clus-
tered with the other points in the same mouse group in
the positive ion mode (Fig. 3a). By contrast, chronically
infected group was not clearly separated from the con-
trol group. In the positive and negative modes, two indi-
viduals in the chronically infected group clustered with
the control group. Finally, 132 significant metabolites

were identified, 23 from acutely infected group vs con-
trol and 109 from chronically infected vs control, as
shown in Additional file 4: Table S2 and Additional
file 5: Table S3, respectively. These metabolites included
lipids, hormones, lactones, acids, peptides, antibiotics,
alkaloids and natural toxins. There were 32 metabolites
involved in wide range metabolic pathways (Table 1).
Venn diagram was developed to correlate metabolites to
the infection phase (Fig. 4). The acutely infected group vs
control and chronically infected vs control shared 12 dif-
ferential metabolites. Also, 4,4-Dimethyl-5alpha-cholesta-
8,14,24-trien-3beta-ol was significantly upregulated and
Ubiquinone-8 was significantly downregulated. However,
levels of arachidonic acid (AA) were different between
acute and chronic infection phases (Table 2).

Metabolic pathways affected by infection phases
Metabolite enrichment analysis was performed and
several metabolic pathways were found to be influ-
enced by infection. As shown in Fig. 5a and Table 3,
the metabolic pathways identified during acute infec-
tion involved primary bile acid biosynthesis, steroid
hormone biosynthesis, arachidonic acid metabolism
and steroid biosynthesis, among others. Some of the
impacted pathways during chronic infection involved pri-
mary bile acid biosynthesis, steroid hormone biosynthesis,
biotin metabolism, arachidonic acid metabolism and ster-
oid biosynthesis (Fig. 5b, Table 4). The most deeply
impacted pathway during both acute and chronic in-
fection was the arachidonic acid metabolism. An illus-
tration of AA metabolism pathway is provided to
show specific metabolites dysregulated during chronic
infection (Fig. 5c).

Discussion
The aim of this work was to elucidate the effect of
T. gondii infection on the metabolism of mouse
spleen, a key organ in regulating immune response

Fig. 2 a The total ion current (TIC) chromatograms of spleen samples in the positive ion mode (ESI+). b PCA scores plot of mice spleens, including
acutely infected (AI), chronically infected (CI) and uninfected control (Con) compared to quality control (QC) samples in the positive ion mode (ESI+).
Clear separation was detected among the different mice groups and in relation to QC samples
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against T. gondii infection. LC-MS/MS-based metabolo-
mics and multivariate statistical analyses revealed new
metabolic changes in the spleen of T. gondii-infected mice
compared with uninfected mice and identified metabolic
signatures that differentiated between the acute infection
and chronic infection.

Stage-specific metabolic signatures
A total of 389 differential ions were screened based on
using VIP scores (VIP > 1) of individual metabolites
obtained from the PLS-DA model. We succeeded to iden-
tify 259 of the 389 differential ions, which highlights the
challenges associated with the identification of metabo-
lites. We used heatmaps to present the results of these
differential ions between different mouse groups. The
heatmaps showed a clear difference between acutely
infected group and the control group (Fig. 3c, Additional
file 2: Figure S2c), but chronically infected group was not
fully distinct from the control group (Fig. 3d, Additional
file 2: Figure S2d). In the positive and negative modes, two
mice in the chronically infected group were clustered with
mice in the control group, which could be attributed to
inter-individual variations among chronically infected
mouse group. Also, converging metabolic responses
between these two chronically infected and control mice
is probably due to homeostatic recovery that might have
occurred as infection progressed to the chronic phase.
Interestingly, we identified 132 significantly altered

metabolites, 23 from acutely infected vs control and 109
from chronically infected vs control mice (Additional
file 4: Table S2, Additional file 5: Table S3), suggesting
that as infection progressed the number of differential me-
tabolites increased. This result disagrees with previous
metabolomic profiling of serum [12] and brain [13] of T.
gondii-infected mice where the most predominant meta-
bolic changes, compared with control mice, happened at
an early stage of infection. These distinct temporal meta-
bolic patterns between metabolomics studies can be
attributed to organ-specific metabolomics organization
(i.e. different repertoire of small molecules present in dif-
ferent organs). Also, the metabolomic response to infec-
tion of a major peripheral immune organ such as spleen,
is expected to be different from that of the serum [12] or
brain [13].
There were 12 shared differential metabolites between

the acute and chronic infection phases (Table 2, Fig. 4).
4,4-Dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol was
significantly upregulated and ubiquinone-8 was signifi-
cantly downregulated, suggesting that these two metab-
olites might play important roles during T. gondii
infection. The upregulation of 4,4-Dimethyl-5alpha-
cholesta-8,14,24-trien-3beta-ol during both acute and
chronic phases might be related to the regulatory effect
of this molecule on host cell meiosis [24]. Expression
patterns of AA were distinct between the acute and
chronic infection phases (i.e. infection stage-specific).

Fig. 3 a, b Two dimensional PLS-DA score plots of the a acutely infected mice and b chronically infected mice vs control mice in the positive
ion mode (ESI+). Each dot represents one spleen sample, projected onto first (horizontal axis) and second (vertical axis) PLS-DA variables. Mice
groups are shown in different colors. The ellipse determines the 95% confidence interval. c, d Heatmaps of the differential metabolites of acutely
infected mice c and chronically infected mice d vs control mice in the positive ion mode (ESI+). Red and green indicate values above and below
the mean, respectively; black indicates values close to the mean
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Table 1 List of identified differential metabolites involved in the perturbed metabolic pathways during acute and chronic phases of
Toxoplasma gondii infection

Mice group Ionization
method

m/z - RT Metabolites VIP FC q-value Metabolic pathways

AI vs Con ESI (+) 369.205–5.980 Corticosterone 2.843 3.049 0.017 Steroid hormone biosynthesis; Regulation of
lipolysis in adipocytes; Aldosterone synthesis
and secretion

433.342–7.128 4,4-Dimethyl-5alpha-cholesta-8,
14,24-trien-3beta-ol

5.216 9.497 0.040 Steroid biosynthesis

299.197–7.263 Stearidonic acid 1.819 0.732 0.025 alpha-Linolenic acid metabolism

453.293–7.612 7alpha-Hydroxy-3-oxo-4-
cholestenoate

1.462 0.704 0.026 Primary bile acid biosynthesis

454.390–7.684 3alpha,7alpha,12alpha,
26-Tetrahydroxy-5beta-cholestane

1.369 0.331 0.011 Primary bile acid biosynthesis

331.224–7.727 17alpha,21-
Dihydroxypregnenolone

1.907 0.550 0.035 Steroid hormone biosynthesis

709.559–8.548 Ubiquinone-8 4.574 0.0565 0.040 Ubiquinone and other terpenoid-quinone
biosynthesis

ESI (−) 303.232–7.199 Arachidonic acid 1.271 0.652 0.045 Arachidonic acid metabolism; Linoleic acid
metabolism; Biosynthesis of unsaturated fatty
acids; Vascular smooth muscle contraction;
Platelet activation; Fc epsilon RI signaling
pathway; Fc gamma R-mediated phagocytosis;
Retrograde endocannabinoid signaling;
Serotonergic synapse; Long-term depression;
Inflammatory mediator regulation of TRP
channels; GnRH signaling pathway; Ovarian
steroidogenesis; Oxytocin signaling pathway;
Regulation of lipolysis in adipocytes;
Aldosterone synthesis and secretion

453.161–8.588 Methotrexate 1.537 0.731 0.047 Bile secretion

CI vs Con ESI (+) 433.342–7.128 4,4-Dimethyl-5alpha-cholesta-8,
14,24-trien-3beta-ol;

4.660 6.459 0.046 Steroid biosynthesis

454.390–7.684 3alpha,7alpha,12alpha,
26-Tetrahydroxy-5beta-cholestane

1.185 0.385 0.014 Primary bile acid biosynthesis

385.344–7.886 Cerebrosterol 2.976 8.236 0.046 Primary bile acid biosynthesis

361.150–8.322 Neamine 3.163 4.633 0.023 Butirosin and neomycin biosynthesis;
Biosynthesis of antibiotics

305.214–8.519 19-Hydroxytestosterone 1.896 1.669 0.049 Steroid hormone biosynthesis

351.229–8.533 Docosahexaenoic acid(DHA) 1.113 1.331 0.033 Biosynthesis of unsaturated fatty acids

709.559–8.548 Ubiquinone-8 7.038 0.019 0.002 Ubiquinone and other terpenoid-quinone
biosynthesis

391.284–8.943 Bile acid 1.342 1.470 0.037 Fat digestion and absorption; Vitamin
digestion and absorption

365.194–8.994 Phorbol 1.464 1.483 0.029 Inflammatory mediator regulation of TRP
channels

419.350–9.386 7alpha,27-Dihydroxycholesterol 1.509 2.112 0.032 Primary bile acid biosynthesis

425.339–9.728 7alpha-Hydroxycholesterol 2.029 2.228 0.006 Primary bile acid biosynthesis

Chen et al. Parasites & Vectors  (2017) 10:339 Page 7 of 12



As shown in Additional file 4: Table S2 and Additional
file 5: Table S3, in the two infection phases, most of the
identified differential metabolites were lipids, which are
essential for the biogenesis of cell and parasite mem-
branes in order to ensure parasite’s survival and replica-
tion within host cells [25].
We chose spleen in this study because of its importance

in immune surveillance during infection. Spleen com-
prises two morphologically and functionally distinct re-
gions (red pulp and white pulp) and contains multiple
subsets of specialized myeloid and dendritic cells. How-
ever, a major drawback of splenic tissue is its complex and
dynamic cellular heterogeneity especially in response to
infection. In the present study, T. gondii infection induced

spatial alterations in the composition of splenic cellular
populations and splenomegaly was a relatively sub-fatal
complication of infection. These changes could have a
profound effect on the metabolome of this tissue and con-
sequently make it hard to dissociate the direct effect of
infection on metabolite expression patterns from the con-
tribution of the anatomical abnormalities associated with
infection. Therefore, it is possible that changes we
observed in the levels of metabolites is a consequence of
the differential contributions of cellular populations of
spleen from acute, chronic and control mice rather than
the result of actual changes in the metabolic activity in
spleen cells triggered by T. gondii infection per se. Precise
mechanisms, however, remain unclear and the specific

Table 1 List of identified differential metabolites involved in the perturbed metabolic pathways during acute and chronic phases of
Toxoplasma gondii infection (Continued)

343.195–8.563 Arachidonic acid 2.132 1.757 0.015 Arachidonic acid metabolism; Linoleic acid
metabolism; Biosynthesis of unsaturated fatty
acids; Vascular smooth muscle contraction;
Platelet activation; Fc epsilon RI signaling
pathway; Fc gamma R-mediated phagocytosis;
Retrograde endocannabinoid signaling;
Serotonergic synapse; Long-term depression;
Inflammatory mediator regulation of TRP
channels; GnRH signaling pathway; Ovarian
steroidogenesis; Oxytocin signaling pathway;
Regulation of lipolysis in adipocytes;
Aldosterone synthesis and secretion;

ESI (−) 295.227–10.292 (9S)-Hydroxyoctadecadienoic acid 1.707 0.702 0.020 Linoleic acid metabolism; PPAR signaling
pathway

317.210–7.655 Leukotriene A4 1.364 1.623 0.020 Arachidonic acid metabolism; Serotonergic
synapse

315.195–8.218 15-Deoxy-delta-12,14-PGJ2 1.834 1.942 0.005 Arachidonic acid metabolism

319.189–8.325 Ubiquinol 2.203 2.424 0.038 Oxidative phosphorylation

301.215–8.353 (5Z,7E,9E,14Z,17Z)-
Eicosapentaenoate

3.001 3.042 0.017 Inflammatory mediator regulation of TRP
channels

289.216–8.328 Androstenediol 2.718 3.058 0.048 Steroid hormone biosynthesis; Ovarian
steroidogenesis

550.264–8.439 Taurocholate 1.654 1.936 0.023 Primary bile acid biosynthesis; Taurine and
hypotaurine metabolism; Bile secretion

371.179–8.511 Biocytin 1.024 0.806 0.030 Biotin metabolism; Vitamin digestion and
absorption

543.151–8.525 Premithramycin A1 2.026 0.598 0.030 Biosynthesis of antibiotics

416.316–8.571 N-Oleoyl dopamine 2.167 3.359 0.024 Neuroactive ligand-receptor interaction

453.161–8.588 Methotrexate 1.686 0.701 0.008 Bile secretion

569.166–8.588 5″-Phosphoribostamycin 1.823 0.538 0.045 Butirosin and neomycin biosynthesis

305.247–8.774 (8Z,11Z,14Z)-Icosatrienoic acid 1.630 1.519 0.031 Linoleic acid metabolism; Biosynthesis of
unsaturated fatty acids

307.262–9.009 Icosadienoic acid 1.767 1.819 0.006 Biosynthesis of unsaturated fatty acids

337.326–9.024 14,15-DHET 1.702 1.557 0.029 Arachidonic acid metabolism; Serotonergic
synapse

283.262–9.238 Octadecanoic acid 1.134 1.207 0.007 Fatty acid biosynthesis; Biosynthesis of
unsaturated fatty acids

Abbreviations: m/z - RT, MS and retention time; VIP, variable importance for projection; FC, fold change; q-value, adjusted P-value calculated by two-tailed Wilcoxon
rank-sum tests after false discovery rate correction
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contributions of the metabolites of the red and white
pulps to the alterations in the levels of metabolites
observed during T. gondii infection remains to be clarified.

The impact on host defense mechanisms
In the acute phase, the level of corticosterone was mark-
edly increased with log2 fold change of 3.049. Hormones
are very important signaling molecules in mammals and
are fundamental for their metabolic and immune homeo-
stasis [26]. Corticosterone is vital in the metabolism of
carbohydrates, fatty acids and amino acids. The markedly
altered corticosterone might reflect variations in the en-
ergy metabolism in the spleen of infected mice, which
might be triggered by illness-related anorexia. Ubiquinol

of the oxidative phosphorylation pathway was probably
upregulated to supply energy needed by the body to
balance its metabolic status during the latent phase of
infection. The anti-fungal molecule gambieric acids A
[27] and the antibiotic molecules, neamine and difloxacin
(INN), were also significantly upregulated. Additionally,
AA, Phorbol and (5Z,7E,9E,14Z,17Z)-Eicosapentaenoate,
which act as inflammatory mediators, were upregulated. It
is likely that spleen defends against T. gondii infection not
only by specific immune processes, but also by eliciting
different metabolic reactions as part of the innate immun-
ity to limit the infection.

Toxoplasma gondii infection disturbs eicosanoid
metabolism
The altered metabolic pathways identified involved pri-
mary bile acid biosynthesis, steroid biosynthesis and ara-
chidonic acid metabolism. Steroid hormones are involved
in a variety of physiological processes; relevant to T. gondii
pathogenesis are the immunoregulatory and anti-
inflammatory effects of steroids, which can influence the
host immune responses to infection [28]. Our results also
revealed AA metabolism, the main precursor of eicosa-
noid hormones, as the most significantly affected meta-
bolic pathway by T. gondii during acute and chronic
infection. At 11 dpi, the level of AA decreased, indicating
down-regulation of AA metabolism during acute infec-
tion. By contrast, at 30 dpi the level of AA was signifi-
cantly upregulated in the chronic phase (Fig. 5c). The
major inflammatory mediators, LTA4, 14,15-HETE, and
15-deoxy-Δ12,14-PGJ2 [29–31], were also up-regulated. In
response to an inflammatory stimulus, AA, the main poly-
unsaturated fatty acid present in the phospholipid of cell
membranes, is released and metabolized to a series of
eicosanoids, including the inflammatory leukotrienes and

Fig. 4 A two-way Venn diagram showing the common and unique
metabolites between acutely and chronically infected mice groups
vs control mice. In total, we found 23 metabolites in acute infection
vs control (blue), of which 12 metabolites could also be identified in
chronically infected mice. Also, we detected 109 metabolites in the
chronically infected mice vs control (yellow), 12 of which were
shared between the groups

Table 2 List of common metabolites in acute and chronic phases of Toxoplasma gondii infection

KEGG.ID Metabolite Differentially expressed metabolitea

Acutely infected Chronically infected

C11455 4,4-Dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol ↑ ↑

C05446 3alpha,7alpha,12alpha,26-Tetrahydroxy-5beta-cholestane ↓ ↓

C13804 ORG 20599 ↓ ↓

C17569 Ubiquinone-8 ↓ ↓

C11606 NAc-FnorLRF-amide ↑ ↑

C00219 Arachidonic acid ↓ ↑

C16147 Glycosyl-4,4′-diaponeurosporenoate ↑ ↑

C16885 Gambieric acid A ↑ ↑

C09261 Disenecionyl cis-khellactone ↑ ↑

C10458 Furcatin ↑ ↑

C01937 Methotrexate ↓ ↓

C14668 Cortancyl ↑ ↑
a↑, upregulated; ↓, downregulated
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prostanoids (e.g. prostaglandins, prostacyclins and
thromboxanes) [32]. AA and its eicosanoid metabo-
lites play an important role in the regulation of many
cellular processes, such as cell survival, angiogenesis,
chemotaxis, mitogenesis, apoptosis and migration [33, 34].
Elevated level of AA in the supernatant of T. gondii-in-
fected cultured J774A.1 cells was assumed to be triggered
by increased Phospholipase A production in order to re-
lease AA via decomposing the host cell membrane phos-
pholipids, thus promoting the parasites invasion by
increasing the host cell membrane permeability and
fluidity [35]. Likewise, T. gondii was shown to increase
AA concentration and agglutination of microfilaments

in phagocytic host cells to accelerate the parasite’s
invasion [35].

Conclusions
We employed global LC-MS/MS-based metabolomics to
detect differential metabolites in the spleen of mice in-
fected with T. gondii and to identify changes in metabolic
pathways with direct relevance to the parasite pathogen-
esis. Our research demonstrated that significant metabolo-
mic impairments occur in the spleen of mice infected with
T. gondii. These included hormones, lactones, acids, pep-
tides, antibiotics, alkaloids, natural toxins and others.
Abnormal metabolism of these metabolites could play

Fig. 5 Pathway analysis of the differential metabolites during acute and chronic infection. Metabolite features with putative identification were
analyzed using MetaboAnalyst for potential impact on metabolic pathways in the acute phase a and chronic phase b. Small P-value and large
pathway impact factor indicate that the pathway is greatly influenced, such as arachidonic acid metabolism pathway, which was highly impacted
during acute and chronic infection. c A schematic illustration of the arachidonic acid metabolism pathway during chronic infection. Red and
black circles represent upregulated and unaltered metabolites, respectively. As shown, arachidonic acid (AA), leukotriene A4 (LTA4), 14,15-HETE,
and 15-deoxy-Δ12,14-PGJ2 were upregulated

Table 3 Summary of the pathway analysis using MetaboAnalyst
during acute Toxoplasma gondii infection

Metabolic pathway Raw P-valuea -log(p) Impactb

Arachidonic acid metabolism 0.2473 1.3971 0.3260

Steroid biosynthesis 0.2413 1.4219 0.1245

Steroid hormone biosynthesis 0.1041 2.2623 0.0578

Primary bile acid biosynthesis 0.0471 3.0561 0.0102
aRaw P-value is the original P-value calculated from the enrichment analysis
bImpact is the pathway impact value calculated from pathway topology analysis

Table 4 Summary of the pathway analysis using MetaboAnalyst
during chronic Toxoplasma gondii infection

Metabolic pathway Raw P-valuea -log(p) Impactb

Arachidonic acid metabolism 0.1664 1.7935 0.4042

Biotin metabolism 0.0984 2.3191 0.3000

Steroid biosynthesis 0.5194 0.6551 0.1245

Primary bile acid biosynthesis 0.0019 6.2581 0.0724
aRaw P-value is the original P value calculated from the enrichment analysis
bImpact is the pathway impact value calculated from pathway topology analysis

Chen et al. Parasites & Vectors  (2017) 10:339 Page 10 of 12



various roles in immune response and inflammatory reac-
tion during T. gondii infection. Our study also revealed
infection stage-specific metabolites, such as arachidonic
acid. More differentially expressed metabolites were de-
tected in the chronic phase compared with the acute
phase. Further, we detected perturbations in biochemical
pathways, including primary bile acid biosynthesis, steroid
hormone biosynthesis, biotin metabolism, arachidonic
acid metabolism and steroid biosynthesis, involved in the
proper functioning of the spleen, which might underpin
the dysregulation in systemic immunity in toxoplasmosis.
The knowledge of spleen metabolomic differences by
disease severity (acute vs chronic stage of T. gondii in-
fection) has potential clinical implications in the devel-
opment of optimal therapies.
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