802 research outputs found

    Mast cells beyond allergy: their role in fibrotic conditions

    Get PDF
    Mast cells play a central role not only in type I hypersensitivity reactions, but also in chronic inflammatory processes resulting in fibrosis. Fibrosis is a process characterized by fibroblast proliferation and/or by excessive production and deposition of collagen and other extracellular matrix components. The close proximity of mast cells and fibroblasts in the connective tissue enables the interaction between these two cell types. Fibroblasts have been shown to provide the microenvironment for connective tissue mast cell differentiation and survival. On the other hand, mast cells can affect fibroblasts through the release of various mediators with either fibrogenic or fibrolytic activities. Mast cells were shown to be present in active form in various fibrotic conditions such as scleroderma, chronic graft-versus-host disease, eosinophilic fasciitis, wound healing, idiopathic pulmonary fibrosis, and ocular cicatricial pemphigoid. This review presents the current data about mast cell and these fibrotic disorders.Biomedical Reviews 1996; 6: 69-74

    Transmembrane Adaptor Proteins in the High-Affinity IgE Receptor Signaling

    Get PDF
    Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis

    Hypoxia modulates human eosinophil function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eosinophils are involved in various inflammatory processes including allergic inflammation during which angiogenesis has been documented. Angiogenesis is most likely connected to the hypoxia which characterizes inflamed tissues. Eosinophils produce VEGF and are pro-angiogenic. However, to the best of our knowledge no study has been performed to verify the existence of a direct link between eosinophils, hypoxia and angiogenesis in allergic inflammation.</p> <p>Objective</p> <p>To characterize eosinophil function and angiogenic potential under hypoxic conditions.</p> <p>Methods</p> <p>Human peripheral blood eosinophils were cultured in normoxic or hypoxic conditions with or without cytokines. Viability and apoptosis were assessed by Annexin V/PI staining. Anti- or pro-apoptotic protein levels, HIF-1α levels and MAPK phosphorylation were analyzed by immunoblot analysis. Angiogenic mediator release was evaluated by ELISA.</p> <p>Results</p> <p>Hypoxic eosinophils were more viable than normoxic ones after up to three days. In addition in hypoxia, anti-apoptotic Bcl-XL protein levels increased more than pro-apoptotic Bax levels. Hypoxia increased VEGF and IL-8 release. In hypoxic eosinophils high levels of HIF-1α were observed, particularly in the presence of GM-CSF. MAPK, particularly ERK1/2 inhibitors, decreased hypoxia-mediated VEGF release and HIF-1α expression.</p> <p>Conclusion</p> <p>Eosinophils respond to hypoxia by up-regulation of survival and of some of their pro-angiogenic functions indicating a correlation between eosinophilic inflammation and angiogenesis.</p

    Complex 2B4 Regulation of Mast Cells and Eosinophils in Murine Allergic Inflammation

    Get PDF
    The cell surface molecule 2B4 (CD244) is an important regulator of lymphocyte activation, and its role in antiviral immunity and lymphoproliferative disorders is well established. Although it is also expressed on mast cells (MCs) and eosinophils (Eos), the functions of 2B4 on these allergy-orchestrating cells remain unclear. We therefore investigated the role of 2B4 on murine MCs and Eos, particularly how this molecule affects allergic and nonallergic inflammatory processes involving these effector cells. Experiments in bone marrow–derived cultures revealed an inhibitory effect for 2B4 in MC degranulation, but also an opposing stimulatory effect in eosinophil migration and delayed activation. Murine disease models supported the dual 2B4 function: In 2B4-/- mice with nonallergic peritonitis and mild atopic dermatitis (AD), modest infiltrates of Eos into the peritoneum and skin (respectively) confirmed that 2B4 boosts eosinophil trafficking. In a chronic AD model, 2B4-/- mice showed overdegranulated MCs, confirming the inhibiting 2B4 effect on MC activation. This multifunctional 2B4 profile unfolded in inflammation resembles a similar mixed effect of 2B4 in natural killer cells. Taken together, our findings provide evidence for physiological 2B4 stimulatory/inhibitory effects in MCs and Eos, pointing to a complex role for 2B4 in allergy

    Effects of dexamethasone on TNF-alpha-induced release of cytokines from purified human blood eosinophils

    Get PDF
    BACKGROUND: TNF-alpha is an important mediator in allergy also for its effects on eosinophils. METHODS: The effect of dexamethasone on TNF-alpha induced eosinophils survival, degranulation (ECP), cytokines release (IL-8, GM-CSF) and adhesion to VCAM-1, ICAM-1 and IgG coated wells (EPO release) were evaluated. RESULTS: The drug inhibited IL-8 and GM-CSF production, but not viability, degranulation or adhesion in human peripheral blood eosinophils. CONCLUSION: These results indicate that part of the activity of glucocorticosteroids on eosinophils may be mediated by their ability to inhibit cytokine secretion that in turn is important for the perpetuation of the allergic inflammation

    Granulocyte-targeted therapies for airway diseases

    Get PDF
    The average respiration rate for an adult is 12–20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature – airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs

    Activation of Siglec-7 Results in Inhibition of in Vitro and in Vivo Growth of Human Mast Cell Leukemia Cells

    Get PDF
    Advanced systemic mastocytosis is a rare and still untreatable disease. Blocking antibodies against inhibitory receptors, also known as 'immune checkpoints', have revolutionized anti-cancer treatment. Inhibitory receptors are expressed not only on normal immune cells, including mast cells but also on neoplastic cells. Whether activation of inhibitory receptors through monoclonal antibodies can lead to tumor growth inhibition remains mostly unknown. Here we show that the inhibitory receptor Siglec-7 is expressed by primary neoplastic mast cells in patients with systemic mastocytosis and by mast cell leukemia cell lines. Activation of Siglec-7 by anti-Siglec-7 monoclonal antibody caused phosphorylation of Src homology region 2 domain-containing phosphatase-1 (SHP-1), reduced phosphorylation of KIT and induced growth inhibition in mast cell lines. In SCID-beige mice injected with either the human mast cell line HMC-1.1 and HMC-1.2 or with Siglec-7 transduced B cell lymphoma cells, anti-Siglec-7 monoclonal antibody reduced tumor growth by a mechanism involving Siglec-7 cytoplasmic domains in 'preventive' and 'treatment' settings. These data demonstrate that activation of Siglec-7 on mast cell lines can inhibit their growth in vitro and in vivo. This might pave the way to additional treatment strategies for mastocytosis

    The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology

    Get PDF
    Given the critical role that the immune system plays in a multitude of diseases, having a clear understanding of the pharmacology of the immune system is crucial to new drug discovery and development. Here we describe the International Union of Basic and Clinical Pharmacology (IUPHAR) Guide to Immunopharmacology (GtoImmuPdb), which connects expert-curated pharmacology with key immunological concepts and aims to put pharmacological data into the hands of immunologists. In the pursuit of new therapeutics, pharmacological databases are a vital resource to researchers through providing accurate information on the fundamental science underlying drug action. This extension to the existing IUPHAR/British Pharmacological Society Guide to Pharmacology supports research into the development of drugs targeted at modulating immune, inflammatory or infectious components of disease. To provide a deeper context for how the resource can support research we show data in GtoImmuPdb relating to a case study on the targeting of vascular inflammation

    A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development: IUPHAR Review 29.

    Get PDF
    In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid-term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti-SARS-CoV-2 agents. This longer term strategy would provide a deeper pool of drug choices for future-proofing against acquired drug resistance. Second, there will be further viral threats, which will inevitably evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and pharmacologists are best placed to provide. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.Welcome Trust 107715/Z/15/
    corecore