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Abstract 66 

In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and in so 67 
doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against 68 
the global pandemic. We assess the scope for targetting key host and viral targets in the mid-term, 69 
by first screening these targets against drugs already licensed; an agenda for drug re-purposing, 70 
which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using 71 
conventional drug discovery methodologies aimed at discovering novel chemical and biological 72 
means targetting a short-list of host and viral entities should extend the arsenal of anti-SARS-CoV-2 73 
agents. This longer-term strategy would provide a deeper pool of drug choices for future-proofing 74 
against acquired drug resistance. Second, there will be further viral threats, which will inevitably 75 
evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and 76 
pharmacologists are best placed to provide. 77 

Introduction 78 

PubMed has already accumulated a vast repository of information on SARS-CoV-2/COVID-19, which 79 
increases on a daily basis (on 2020-03-23, there were 1369 hits for COVID-19; this number more 80 
than doubled in the space of two weeks, so that by 2020-04-06 there were 2780 hits in PubMed for 81 
COVID-19). Clearly, there is a need to summarise this information critically and prioritise the 82 
elements which are constructive and useful for each individual sector. This document suggests 83 
priorities for how drug discovery and development might be rationally focussed for the rapid 84 
identification and successful translation of therapeutic agents to treat COVID-19.  85 

Given the urgency of the current situation, clearly initial drug discovery should focus on repurposing 86 
licensed drugs, as dosage and safety information are largely to hand. Unfortunately, there is 87 
controversy over proof of efficacy for essentially all the potential repurposed agents for which 88 
preliminary, and, in many cases, non-peer reviewed data have surfaced. Some of this controversy is 89 
addressed below but efforts are underway from both WHO and NIH to coordinate larger, higher 90 
powered and better controlled studies in an attempt to demonstrate efficacy unequivocally. As a 91 
‘second wave’, de novo discovery focussing on novel agents may allow future refinement and 92 
capacity to treat patients who are unable to be treated by, or are unresponsive to, the repurposed 93 
agents, but it would be very unlikely to have these new drugs available to treat the current crisis. 94 

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb) is an open-access database, developed by the 95 
International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological 96 
Society (BPS). It provides expert-curated descriptions of almost 3,000 human proteins and over 97 
10,000 ligands, including more than 1400 approved drugs. Management of the new resource is the 98 
responsibility of the Nomenclature and Standards Committee of IUPHAR (NC-IUPHAR), which acts as 99 
the scientific advisory and editorial board. The committee has an international network of over 700 100 
expert volunteers organized into ∼60 subcommittees dealing with individual target families. The 101 
database is notably enhanced through the continued linking of relevant pharmacology with key 102 
immunological data types as part of the IUPHAR Guide to IMMUNOPHARMACOLOGY (supported by 103 
the Wellcome Trust) and by a major new extension, the IUPHAR/MMV Guide to Malaria 104 
PHARMACOLOGY (in partnership with the Medicines for Malaria Venture). The GtoPdb team centred 105 
at the University of Edinburgh have constructed a resource (Faccenda et al.), which provides a precis 106 
of the current understanding about the virus and potential associated drug targets and drugs. As 107 
with the other databases, the emphasis of the curation process is on stringent provenancing of the 108 
information provided, although inevitably the current situation limits the capacity for triangulation 109 
of data.  110 

Nomenclature 111 

Sequencing analysis of the novel virus has identified a high level of similarity with the virus identified 112 
to cause the Severe Acute Respiratory Syndrome (SARS) outbreak in China in 2002/03/04, which was 113 
known as the SARS coronavirus or SARS-CoV. Provisionally named as 2019-nCoV, the virus has been 114 
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renamed SARS-CoV-2 (Viruses, 2020). For the purposes of this document, the virus is described as 115 
SARS-CoV-2, while the infectious disease is named as COVID-19 (World Health Organization, 2020). 116 
One of the positive aspects of the emergence of SARS-CoV-2 and COVID-19 is the rapidity at which 117 
aspects like genome sequencing (for example, Lu et al., 2020; Wu et al., 2020) and 3D structures (for 118 
example, Yan et al., 2020) have been described. 119 

Protein targets and drugs in the current review follow nomenclature as presented on the 120 
GuidetoPHARMACOLOGY.org website (Alexander, Ball & Tsoleridis. SARS-CoV-2 proteins, accessed 121 
on 2020-04-24) and the Concise Guide to Pharmacology 2019/20 (Alexander et al., 2019). 122 

The viral cycle and virally-encoded potential drug targets 123 

For general reviews of the coronaviruses, see Masters, 2006; Fehr and Perlman, 2015; de Wit et al., 124 
2016; Zumla et al., 2016; Cui et al., 2019; Desforges et al., 2019; Song et al., 2019. SARS-CoV-2 is a 125 
betacoronavirus; a lipid-enveloped, single-stranded, positive sense RNA virus. Other human 126 
coronaviruses include alphacoronaviruses, such as human coronavirus-229E (HCoV-229E), and 127 
betacoronaviruses, such as SARS-CoV and MERS-CoV (responsible for the Middle East respiratory 128 
syndrome) (for review, see Zumla et al., 2016; Corman et al., 2018; Pillaiyar et al., 2020). More than 129 
200 viral types have been associated with the common cold, of which 50% of infections are 130 
rhinovirus, but also include respiratory syncytial virus, influenza and coronaviruses, particularly 131 
HCoV-229E. Although HCoV-229E is regarded as ‘relatively benign’ since monocytes are much more 132 
resistant to infection, it does rapidly kill dendritic cells (Mesel-Lemoine et al., 2012). 133 

Classically, the viral lifecycle can be divided into six elements: cell attachment; cell entry; viral 134 

uncoating; nucleotide replication; viral assembly, and release (see Figure 1). Positive-stranded RNA 135 
viruses replicate in the cytoplasm of infected cells, in close contact with intracellular membranes. 136 
This organization allows a concentration of viral and host factors to enable virus production and to 137 
evade innate immune responses (reviewed by Yager and Konan, 2019). 138 

The SARS-CoV-2 coronavirus 30 kb genome encodes 29 proteins has 15 open reading frames, two of 139 
which encode viral polyproteins that generate 16 non-structural proteins (see below) (Wu et al., 140 
2020). Historically, therapeutic benefit has been gained through exploitation of the differences 141 
between viral and host proteins that subserve superficially similar functions (proteases and 142 
nucleotide polymerases, for example). The rapidity with which structural elements of the SARS-CoV-143 
2 proteome have been identified provides hope that drug discovery approaches will soon provide 144 
agents to target the virus selectively, with minimal impact on the host. Based on the evidence from 145 
orthologous proteins from other betacoronaviruses and the information currently available on SARS-146 
CoV-2 (some of it not yet from peer-reviewed sources), we propose here the priority targets for 147 
pharmacological investigation. That should not be taken to mean that research should be limited to 148 
these targets, since there are undoubtedly a number of functions of the viral proteins still to be 149 
ascertained. It would be remiss not to conduct a thorough examination of all the viral proteome, 150 
both in isolation and in combination. The strategies we learn from investigation of the host:viral 151 
interaction from SARS-CoV-2 will stand us in good stead for future viral threats. 152 

Cellular attachment and entry; replication, assembly and release 153 

Coronavirus binds to cell surface proteins on target cells and, following proteinase priming of spike 154 
proteins on the virus surface, the virus is internalized into endosomal fractions that are subsequently 155 
acidified, or accumulates through a non-endosomal route (Fehr and Perlman, 2015) (Figure 1). The 156 
endosomal route appears to involve clathrin (Inoue et al., 2007), but there are contradictory reports 157 
of the importance of the intracellular C-terminus of ACE2 in this mechanism (Inoue et al., 2007; Haga 158 
et al., 2008). A fusion domain permits insertion of a key protein (S, see below), which then allows 159 
mixing of the viral and cellular membranes and subsequent release of the coronaviral genome into 160 
the cytoplasm. 161 

Following entry into the host cell cytoplasm and viral uncoating, the replicase gene of the viral RNA 162 
is translated. The genome of coronaviruses consists of a single, continuous, linear, ssRNA, capped at 163 
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the 5’ end and with a 3’-polyA tail (Fehr and Perlman, 2015). Translation occurs from open reading 164 
frame (ORF) 1a and 1b at the 5’ terminus, with a ribosomal frameshifting mechanism allowing the 165 
overlap between ORF1a and ORF1b to generate the two polyproteins pp1a and pp1ab (Fehr and 166 
Perlman, 2015; Perlman and Netland, 2009; Snijder et al., 2003; Thiel et al., 2003). In SARS-CoV-2, 167 
the polyproteins are long, 4405 and 7096 aa, respectively. Encoded within the polyproteins of 168 
betacoronaviruses are two proteinases: papain-like proteinase, PLpro, and chymotrypsin-like 169 
proteinase, 3CLpro. In SARS-CoV, PLpro, derived from the polyproteins, has three endoproteinase 170 
target sites, which release nsp1-3 (Thiel et al., 2003). 3CLpro has 11 cleavage sites to release the 171 
remaining non-structural proteins. In the coronavirus family, these proteinases process the 172 
polyproteins to generate 16 functional non-structural proteins identified as nsp1-16 (Anand et al., 173 
2003; Thiel et al., 2003; Ziebuhr et al., 2007; Kindler et al., 2016; Cui et al., 2019). 174 

Downstream of the ORF1a and 1b are genes encoding four structural proteins (Spike, Envelope, 175 
Membrane and Nucleocapsid) (Figure 2) and a short series (described as at least 13 in total, 176 
Srinivasan et al., 2020) of other proteins (see below). Once sufficient protein and RNA accumulate, 177 
coronavirus assembly takes place, centred on the structural proteins. The release of coronavirus 178 
particles involves the secretory pathway of the endoplasmic reticulum and Golgi apparatus and 179 
vesicular exocytosis (for review, see de Haan and Rottier, 2005; Fehr and Perlman, 2015), and it is 180 
likely, but as yet unconfirmed, that SARS-CoV-2 adopts this mechanism also.  181 

To date, there is more evidence about the molecular detail involved in (and the possibilities to 182 
modify) viral recognition, entry and replication compared to uncoating, assembly and release, hence 183 
the attention paid here to the former three mechanisms. 184 

Targetting virus recognition and cellular entry 185 

The cell-surface anchor - ACE2 186 

Among the coronaviruses, the spike protein interacts with proteinases to anchor on host cell 187 
surfaces. The cell-surface anchoring point for the alphacoronavirus HCoV-229E is aminopeptidase N 188 
(also known as CD13, Yeager et al., 1992). For the betacoronavirus MERS-CoV, dipeptidylpeptidase 4 189 
(also known as CD26, Raj et al., 2013) is an anchor. Analysis of the co-crystal structure suggested 190 
that the SARS spike protein binds to the active site of angiotensin converting enzyme 2 (ACE2, Li et 191 
al., 2005). Binding of SARS-CoV spike to ACE2 seems to require cholesterol-rich rafts in the host cells 192 
(Glende et al., 2008)00. Recent evidence points to the spike protein of SARS-CoV-2 also binding to 193 
ACE2. Both SARS-CoV (Li et al., 2003) and SARS-CoV-2 (Hoffmann et al., 2020; Letko et al., 2020) 194 
have been described to require ACE2 to enter cells (Figure 1). A particular domain of the spike 195 
protein of SARS-CoV-2, a so-called Receptor-Binding Domain (RBD), has been shown to facilitate 196 
binding to ACE2 (Hoffmann et al., 2020). The ACE2 peptidase active site is located remotely from the 197 
cell membrane (Li et al., 2005; Wrapp et al., 2020; Yan et al., 2020), into which the Spike protein 198 
binds. The RBD of the Spike protein is located in the S1 ectodomain, approximately a third of the 199 
way along the protein. ACE2 is a carboxypeptidase, which means it removes the terminal amino acid 200 
from oligopeptides, and so it seems unlikely that the Spike protein is a substrate for ACE2. 201 

In SARS-CoV-infected mouse lung, ACE2 protein expression was downregulated compared to 202 
uninfected mice (Kuba et al., 2005). Following SARS-CoV Spike protein administration to mice, 203 
angiotensin II was increased in the lungs (Kuba et al., 2005). These observations led to the 204 
suggestion that this was the molecular mechanism for the frequent development of acute 205 
respiratory distress syndrome (ARDS) during SARS-CoV infections (Imai et al., 2005; Kuba et al., 206 
2005).  207 

ACE2 activity has been reported to be released from plasma membranes by proteolysis, thought to 208 
be through the action of TNFα convertase (ADAM17, A Disintegrin And Metalloproteinase domain 209 
containing protein 17, Lambert et al., 2005) (Figure 1). The activity of ADAM17 can be increased by G 210 
protein-coupled receptor activation, including the AT1 angiotensin receptor (Schafer et al., 2004). 211 
ACE2, and ACE, activity can be measured in human plasma (Ocaranza et al., 2006; Herath et al., 212 
2007; Lew et al., 2008). Human plasma ACE2 activity is reported to be ‘masked’ by the presence of 213 
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endogenous inhibitors (Lew et al., 2008), which don’t yet appear to have been precisely defined. 214 
Blood ACE2 activity can be altered in pathology; for example, serum ACE2 was found to be 215 
decreased in patients following acute ischemic stroke (Bennion et al., 2016). 216 

The expression of ACE2 mRNA and enzyme activity in cardiac tissues were increased following 217 
repeated oral administration of the AT1 angiotensin II receptor antagonist losartan, while oral 218 
administration of an ACE inhibitor lisinopril only increased cardiac mRNA expression, but not enzyme 219 
activity (Ferrario et al., 2005). 220 

Studies using disruption of the ace2 gene in mice indicated an increase in circulating angiotensin II 221 
levels and a severe cardiac contractility defect, which could be ‘rescued’ with simultaneous genetic 222 
disruption of ACE (Crackower et al., 2002). An early investigation of ACE2 polymorphisms in man 223 
failed to show an association with hypertension (Benjafield et al., 2004). A study of SARS victims and 224 
ACE2 polymorphisms failed to find a correlation with patient outcomes (Chiu et al., 2004). 225 

The coronaviral Spike protein  226 

The spike protein is the largest viral structural protein (~1200-1400 aa) and is heavily glycosylated, 227 
forming extended trimeric structures providing the characteristic ‘crown’ feature of coronaviruses 228 
(Belouzard et al., 2012) (see Figure 2). The ectodomain is divided into the S1 domain responsible for 229 
binding to ACE2, whereas the S2 domain is responsible for the fusion machinery. Following binding 230 
of the S1 domain to ACE2, a deformation of the pre-fusion trimer results (Wrapp et al., 2020). 231 
Surface plasmon resonance of the binding of human ACE2 to the immobilized SARS-CoV-2 indicated 232 
an affinity (Kd value) of 15 nM, an order of magnitude larger than SARS-CoV binding to ACE2 (Wrapp 233 
et al., 2020). Using a related label-free technique, biolayer interferometry, affinities of 5 and 1.2 nM 234 
for binding of SARS-CoV and SARS-CoV-2 spike protein, respectively, to human ACE2 has been 235 
reported (Walls et al., 2020).  236 

Although a proteolytic cleavage site at the S1/S2 boundary of the SARS-CoV Spike protein is the best 237 
characterised, a second site upstream of the fusion peptide in the S2 domain, called S2’ has also 238 
been described (Belouzard et al., 2009). This raises the possibility that multiple other proteases 239 
might be targetted to influence coronavirus activation (Millet and Whittaker, 2015). A key difference 240 
between the Spike proteins in SARS-CoV and SARS-CoV-2 is the presence in the latter of a site at the 241 
S1/S2 boundary predicted to be sensitive to the proteinase furin, and which may be targetted during 242 
viral assembly and maturation (Walls et al., 2020).  243 

The SARS-CoV S2 domain has a pair of α-helices, which may participate in coiled:coil structures 244 
during membrane fusion (Petit et al., 2005). The host complex of ZDHHC9 (Link to UniProt) with 245 
GOLGA7 (Link to UniProt), a palmitoyltransferase, which modifies the low molecular weight G 246 
proteins NRAS and HRAS (Swarthout et al., 2005), also palmitoylates the cysteine-rich S2 247 
endodomain of the SARS-CoV to facilitate membrane fusion (Petit et al., 2007). 248 

Very recently, in a comparison of the S2 domains of SARS-CoV and SARS-Cov-2, an enhanced 249 
capacity of the novel virus’ S2 domain for membrane fusion was observed and suggested to result 250 
from eight differing amino acids (Xia et al., 2020). Using a series of oligopeptides conjugated to lipid 251 
entities, high affinity (IC50 values in the nanomolar range) inhibitors of cell fusion were identified. 252 

Interfering with the ACE2:Spike interaction 253 

Given that the spike protein binds to the active site of ACE2 (Li et al., 2005), in theory, any alteration 254 
in the availability of the active site should influence the binding of the spike protein and, hence, 255 
interfere with SARS-CoV-2 infection. One option would be to provide an excess of an endogenous 256 
peptide substrate, or more conventionally to apply a selective enzyme inhibitor. 257 

Endogenous substrates of ACE2 258 

ACE2, discovered in 2000 (Donoghue et al., 2000), shares 40% sequence similarity to ACE within the 259 
N-terminal domain and is a type I transmembrane metallopeptidase. Unlike ACE, it functions as a 260 
zinc carboxypeptidase to cleave single C-terminal amino acids from peptides, particularly hydrolysing 261 
Pro-Phe residues in angiotensin-(1-8) to angiotensin-(1-7), [Pyr1]-apelin 13 to [Pyr1]-apelin-(1-12) and 262 
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[des-Arg9]-bradykinin to bradykinin-(1-8) with high efficiency. It may also cleave other peptides less 263 
effectively (Vickers et al., 2002), shown below: 264 

Angiotensin I   angiotensin-(1-9) + Leu 
Angiotensin II  angiotensin-(1-7) + Phe 
Apelin-(1-13)   QRPRLSHKGPMP + Phe 
Apelin-(1-36)   ….QRPRLSHKGPMP + Phe 

[Des-Arg9]-Bradykinin   RPPGFSP + Phe 
Dynorphin A-(1-13)   YGGFLRRIRPKL + Lys 

115 other peptides were not hydrolysed by ACE2 including adrenocorticotrophic hormone, 265 
calcitonin, cholecystokinin, met-enkephalin, glucagon, glucagon-like peptide-1, melanin-266 
concentrating hormone, pituitary adenylyl cyclase-activating polypeptide, somatastatin-14, urocortin 267 
or vasoactive polypeptide (Vickers et al., 2002). 268 

In humans, levels of mRNA encoding ACE2, together with immunoreactive peptide, are highest in the 269 
gastrointestinal tract, followed by heart, kidney, testes and gall bladder and other tissues (Uhlen et 270 
al., 2015).  Within organs, ACE2 immunoreactivity was predominantly localised to epithelial (for 271 
example, in the lungs) and endothelial cells from all vascular beds examined (Yang et al., 2017). 272 
Importantly, the ACE2 antisera used in this study for immunocytochemistry was the same as that 273 
employed in the study described in the section below “Using biopharmaceutical/antibody 274 
approaches to target ACE2:Spike interactions” (Hoffmann et al., 2020), to block entry of the virus in 275 
cell culture. The epitope of this antisera would be a rational starting point for the development of 276 
selective therapeutic antibodies. 277 

The presence of ACE2 on airway epithelial cells is consistent with the isolation of SARS-CoV-2 from 278 
broncho-alveolar lavage of patients with COVID19 and the infection of cultured airway epithelial 279 
cells (Zhu et al., 2020). In humans, levels of ACE2 immunoreactivity tend to be low. However, in 280 
addition to being upregulated by ACE inhibitors and angiotensin receptor antagonists (see above), 281 
ACE2 expression has been reported to be increased in human cardiovascular disease, for example, in 282 
the cardiomyopathic heart (Zisman et al., 2003). Since ACE2 is critical for viral entry, it may be one 283 
explanation for the high incidence of co-morbidity of COVID-19 patients with cardiovascular disease. 284 

Manipulation of ACE2 activity by synthetic agents 285 

Assays employing fluorogenic surrogate substrates to screen for inhibitors of ACE2 activity are well-286 
established, for example using methoxycoumarin-RPPGFSAFK(Dnp)-OH (Ocaranza et al., 2006; 287 
Bennion et al., 2016), or methoxycoumarin-APK(Dnp)OH (Herath et al., 2007; Lew et al., 2008; 288 
Mores et al., 2008). Detailed protocols for the use of methoxycoumarin-APK(Dnp)OH have been 289 
described for FRET-based high throughput screening (Sriramula et al., 2017; Xiao and Burns, 2017). 290 

This style of assay identified that ACE2 was not inhibited in the presence of 10 µM lisinopril, 291 
enalaprilat, or captopril, inhibitors of angiotensin-converting enzyme (Tipnis et al., 2000). There are 292 
no licensed drugs described to inhibit ACE2 activity. However, DX600 is a peptide-based ACE2 293 
inhibitor (Huang et al., 2003), while MLN4760 and compound 28 are described as sub-nanomolar 294 
potency ACE2 inhibitors (Mores et al., 2008).  295 
There is evidence for allosteric regulation of ACE2 activity, in that a xanthenone derivative (XNT) was 296 
observed to enhance ACE2, but not ACE, activity in vitro with a potency of 20 µM (Hernandez Prada 297 
et al., 2008). An in silico study later identified a binding site in an allosteric hinge region of ACE2, 298 
distinct from the proteinase active site, against which 1217 FDA-approved drugs were screened 299 
(Kulemina and Ostrov, 2011). A subsequent kinetic assay with the recombinant enzyme and a 300 
fluorigenic substrate identified labetalol and diminazene as agents able to double the maximal 301 
velocity of ACE2 enzyme activity. 302 
Whether any of these compounds alter the binding of the spike protein from either SARS-CoV or 303 
SARS-CoV-2 or viral infection in general does not appear to have been examined yet. 304 

A speculative area that should be explored further is the concept of enhancing the activity of the 305 
serine proteinase ADAM17 to increase cleavage and release of membrane bound ACE2. Peptides 306 
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such as angiotensin II are reported in animal models to cause release (‘shedding’) following binding 307 
to AT1 receptors (Xu et al., 2017). Although angiotensin II is licensed by the Federal Drug 308 
Administration to treat sepsis (known as Giapreza, Davenport et al., 2020), it would be inadvisable as 309 
a treatment for COVID-19 given the detrimental action of angiotensin II on the lungs. In contrast, the 310 
investigational agent [Pyr1]-apelin-13 is currently used in clinical studies (Davenport et al., 2020) and 311 
may also interact with its cognate receptor to downregulate membrane-expressed ACE2. This 312 
peptide also has beneficial effects on the heart, including an increase in cardiac output (Japp et al., 313 
2010). 314 

Using biopharmaceutical/antibody approaches to target ACE2:Spike interactions 315 

An alternative approach to the small molecule manipulation of the ACE2 enzyme would be to target 316 
the spike or ACE2 proteins with selective antibodies. Antibodies directed against ACE2 led to a 317 
reduction in SARS-CoV-2 virus entry into target cells (Hoffmann et al., 2020), although this is likely to 318 
be some distance away from a therapeutic application. 319 

A truncated version of human recombinant ACE2, lacking the transmembrane domain, mitigated 320 
against SARS-CoV infection of cells (Li et al., 2003) and has been used in animal models to reduce 321 
symptoms of severe acute lung failure (Imai et al., 2005), diabetic nephropathy (Oudit et al., 2010) 322 
and cardiac hypertrophy and fibrosis (Zhong et al., 2010). Treating SARS-CoV-2 victims with a soluble 323 
form of ACE2 (Batlle et al., 2020) or a fusion protein of the spike-binding portion of ACE2 combined 324 
with the Fc portion of human IgG (Lei et al., 2020) has been suggested. 325 

Apeiron Biologics has approval to conduct a Phase II clinical trial of APN01 (human recombinant 326 
ACE2) for the treatment of COVID-19 in three European countries (Austria, Germany and Denmark) 327 
(NCT04335136). This recombinant version of ACE2 was originally licensed to GlaxoSmithKline and 328 
previously tested as GSK2586881 in a Phase 2 multicentre trial (NCT01597635) in patients with 329 
lung injury or ARDS, both features of SARS and MERS (and now COVID-19). The study tested the 330 
hypothesis that cleavage of angiotensin II (which causes lung injury - vasoconstriction, inflammation, 331 
fibrosis, vascular leak, and sodium absorption) to angiotensin-(1-7), would have counter regulatory 332 
beneficial action and reduce long term injury. GSK2586881 was well-tolerated in patients with ARDS, 333 
and the rapid modulation of peptides of the renin-angiotensin system demonstrated target 334 
engagement, in that levels of angiotensin II decreased rapidly whereas angiotensin-(1-7) levels 335 
increased and remained elevated for 48 h, although the study was not powered to detect changes in 336 
acute physiology or clinical outcomes (Khan et al., 2017). 337 

Sera from convalescent SARS-CoV patients prevented the cell entry of SARS-CoV-2 (Hoffmann et al., 338 
2020) and this approach has been used with some success in the SARS, MERS and COVID-19 339 
outbreaks (for review, see Bloch et al., 2020). The difficulty in identifying the precise molecular 340 
mechanism/s of convalescent sera action and issues with collection, standardization and scaling-up 341 
will be a challenge (Bloch et al., 2020). 342 

A bacterial equivalent of ACE2 (based on 3D structure rather than primary sequence) termed B38-343 
CAP has been described, which is reported to reduce hypertension and limit cardiac dysfunction in 344 
an animal model (Minato et al., 2020). Whether this agent might provide a decoy anchor to ‘chelate’ 345 
viral particles prior to cell entry has not been investigated. 346 

In a preliminary (as yet, not peer reviewed) study, a conformational change in the S1 RBD of the 347 
SARS-CoV-2 Spike protein in the presence of heparin was noted (Mycroft-West et al., 2020). Cell-348 
surface heparan sulphate glycosaminoglycans have previously been suggested to be a lactoferrin-349 
sensitive alternative attachment point for the SARS-CoV virus (Lang et al., 2011). These observations 350 
suggest further routes for pharmacological targetting of viral infection and propagation.  351 

The cell-surface priming mechanism - TMPRSS2 352 

TMPRSS2 is a single transmembrane domain protein with an extracellular serine protease domain, 353 
which appears to cleave substrates preferentially at basic residues (arg/lys), with a calcium-binding 354 
LDL receptor class A domain (Paoloni-Giacobino et al., 1997). The TMPRSS2 gene encodes a cell-355 
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surface proteinase (transmembrane serine protease 2, TMPRSS2) and is located at chromosomal 356 
locus 21q22.3 in close proximity to ERG, a gene encoding an ETS transcription factor (Link to UniProt, 357 
Paoloni-Giacobino et al., 1997). (ERG fusion with EWS leads to Ewing’s sarcoma) Fusion of the 358 
TMPRSS2 and ERG (or the related ETV1) genes has been reported to occur in the majority of prostate 359 
cancers and is suggested to lead to an androgen-dependent amplification of ETS-regulated genes 360 
(Tomlins et al., 2005). TMPRSS2 expression is androgen-regulated (Lin et al., 1999; Chen et al., 2019); 361 
it is expressed highly in prostate cancer (Lin et al., 1999; Lucas et al., 2008) (for review, see Tanabe 362 
and List, 2017) and loss of TMPRSS2 in the prostate is associated with reduced metastatic potential 363 
(Lucas et al., 2014). In aggressive versions of prostate cancer, TMPRSS2 undergoes autocatalytic 364 
proteolysis at Arg255-Ile256 (Afar et al., 2001), where the two chains may remain in combination due 365 
to interchain disulphide bridges (Chen et al., 2010) or the catalytic moiety may be secreted (Chen et 366 
al., 2010). In LNCaP human prostate cancer cells, the PPARα agonist fenofibrate was able to mitigate 367 
against the androgen receptor agonist-evoked increase in TMPRSS2 expression (Zhao et al., 2013). 368 

Following binding of the S protein to ACE2, TMPRSS2 ‘primes’ the spike protein to facilitate entry of 369 
the virus into the target cell (Hoffmann et al., 2020; Matsuyama et al., 2020). Pathogenesis of two 370 
strains of influenza virus has been reported to be markedly diminished by gene disruption of tmprss2 371 
in mice (Hatesuer et al., 2013; Tarnow et al., 2014), inferring that targeting this enzyme may have 372 
antiviral potential. 373 

Interfering with the TMPRSS2:Spike interaction 374 

Using immunohistochemical analysis (Bertram et al., 2012) and, very recently, using single nuclei and 375 
single cell RNA sequencing (Lukassen et al., 2020), as yet not peer reviewed) of lung samples from 376 
otherwise healthy subjects, ACE2 and TMPRSS2 were shown to be co-expressed in human bronchial 377 
epithelial cells, which could be a nexus for primary infection. A similar approach identified co-378 
expression of ACE2 and TMPRSS2 in nasal goblet cells, lung type II pneumocytes and small intestine 379 
absorptive epithelia (Ziegler et al., 2020). In the same study, human primary nasal epithelial cells 380 
showed an upregulation in ACE2 expression following 12 h incubation with interferon-α2 and 381 
interferon-γ, which suggests the potential for a feed-forward mechanism whereby the virus interacts 382 
preferentially with ‘activated’ cells to suppress the innate immune response (see below) (Ziegler et 383 
al., 2020). 384 

By analogy with the previous consideration of ACE2 (above), alternatives to manipulate TMPRSS2 385 
activity would be to provide endogenous substrates or synthetic inhibitors. However, the potential 386 
to make use of endogenous substrates seems limited. Thus, although TMPRSS2 has been described 387 
to hydrolyse and activate the cell-surface G protein-coupled receptor proteinase-activated receptor 388 
2 (Wilson et al., 2005), mice lacking tmprss2 failed to display an overt phenotype (Kim et al., 2006).  389 

As with ACE2, there are no reports of licensed drugs which inhibit TMPRSS2 activity. Cbz-GGR-390 
aminomethylcoumarin has been described as a surrogate fluorogenic substrate suitable for high-391 
throughput screening (Paszti-Gere et al., 2016), although it is also a substrate for other proteinases, 392 
such as chymotrypsin. I432, a 3-amidinophenylalanine, has been described as a high affinity selective 393 
inhibitor (compound 92, Ki of 0.9 nM) of TMPRSS2 (Meyer et al., 2013). In IPEC-J2 pig jejunal 394 
epithelial cells, 10-50 µM I432 reduced TMPRSS2-derived product in cell media (Paszti-Gere et al., 395 
2016). 396 

In an investigation of SARS-CoV entry into HeLa cells expressing recombinant ACE2 and TMPRSS2, a 397 
number of serine proteinase inhibitors (benzamidine, aprotinin, gabexate, tosyl lysyl chloromethyl 398 
ketone and camostat) were tested (mostly) at 10 µM for 30 min before exposure to pseudotyped 399 
viruses. Only camostat was effective at reducing viral entry (Kawase et al., 2012), and further 400 
experiment suggested that 1 µM camostat was also effective, but only when TMPRSS2 was 401 
expressed. At 10 and 50 µM, camostat inhibited cell entry of the SARS-CoV and SARS-CoV-2 spike 402 
protein (Hoffmann et al., 2020). A direct inhibition of TMPRSS2 activity appears not to have been 403 
reported for camostat. 404 

Potential ancillary proteins for virus entry - B0AT1/SLC6A19 and B0AT3/SLC6A18 405 
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The SLC6 family of transporters includes the well-characterised NET, SERT and DAT monoamine 406 
transporters, as well as the less well-exploited neutral amino acid transporter subfamily. 407 
B0AT1/SLC6A19 and B0AT3/SLC6A18 allow sodium- and chloride-dependent accumulation of neutral, 408 
aliphatic amino acids at the apical membranes of epithelial cells in the small intestine 409 
(B0AT1/SLC6A19) and kidney (B0AT1/SLC6A19 and B0AT3/SLC6A18) (for review, see Broer and 410 
Gether, 2012). B0AT3/SLC6A18 is also highly expressed in the GI tract and gall bladder (Protein Atlas) 411 
and may play a role in the faecal:oral transmission of coronavirus (Yeo et al., 2020). The cell-surface 412 
expression of these neutral amino acid transporters is dependent on co-expression of ACE2 413 
(Kowalczuk et al., 2008; Fairweather et al., 2012), aminopeptidase N (Fairweather et al., 2012) or 414 
collectrin (an adaptor protein, which has high homology to the transmembrane region of ACE2, 415 
Camargo et al., 2009, Link to UniProt), in an apparently tissue-dependent manner (Kuba et al., 2010). 416 
A recent cryo-EM structure suggested that ACE2 and B0AT1/SLC6A19 form a heterodimer which pairs 417 
up through interfaces between the two ACE2 partners (Figure 1), with the RBD of SARS-CoV-2 spike 418 
protein binding to the peptidase active site of ACE2 (Yan et al., 2020) suggesting that B0AT1/SLC6A19 419 
may facilitate entry of the novel coronavirus. In the small intestine, absorptive epithelial cells were 420 
identified to co-express mRNAs encoding for ACE2 and TMPRSS2 (Ziegler et al., 2020). Although it is 421 
not yet tested, it would be attractive to speculate that the colocalized expression of these targets 422 
may play a role in the faecal:oral transmission of coronavirus (Yeo et al., 2020). 423 

Interfering with the neutral amino acid transporters 424 

Assays for B0AT1/SLC6A19 and B0AT3/SLC6A18 tend to be traditional accumulation of amino acids 425 
labelled with ionising or stable isotopes. Recently, a primary screen using a membrane potential-426 
sensitive fluorescence-based assay was used and followed up with a stable isotope accumulation 427 
assay to identify a novel inhibitor, cinromide, which exhibited modest potency (0.3-0.4 µM) for 428 
inhibiting B0AT1/SLC6A19 in cell-based assays (Danthi et al., 2019).  429 

Targetting viral uncoating and replication 430 

Viral uncoating 431 

Once inside the cell, the endosomal cysteine proteases cathepsin B and cathepsin L have been 432 
described to process SARS-CoV (Simmons et al., 2005) and this appears to be maintained for SARS-433 
CoV-2 (Hoffmann et al., 2020) although the significance of such intracellular proteinase activity is 434 
unclear. Potent inhibitors for these two proteinases have been reported as pharmacological probes, 435 
but there are no licensed drugs identified to target them. 436 

Following entry into the cell, many viruses accumulate in acidified lysosome-like vesicles, and so 437 
weak bases (including ammonium chloride and chloroquine) which target the lysosome have been 438 
used in vitro to target this mechanism. Ammonium chloride (at 20 mM) has been described as a non-439 
specific inhibitor of viral replication in vitro, targeting viral uncoating (Mizzen et al., 1985) and, at 50 440 
mM, ammonium chloride inhibited cell entry of both SARS-CoV and SSARS-CoV-2 (Hoffmann et al., 441 
2020). Chloroquine was also observed to reduce infection of L cells by mouse hepatitis virus 3 442 
(Krzystyniak and Dupuy, 1984). 443 

Viral replication 444 

Following entry into the cell, the virus subverts nucleotide, protein, lipid and carbohydrate turnover 445 
of the host cell to produce multiple copies of itself. The viral RNA is translated into multiple proteins 446 
to produce the replication machinery. As protein translation from the viral genome occurs, the two 447 
polyproteins are the first to be synthesised, with the two intrinsic proteases able to cleave the 448 
polyproteins into their constituent products. 449 

Targetting the viral proteinases 450 

The low sequence similarities between mammalian and viral proteases has allowed successful drug 451 
targetting of viral diseases, including both HIV/AIDS and HCV/hepatitis C. The genome of SARS-CoV-2 452 
contains two proteinases intrinsic to the polyproteins, PLpro and 3CLpro. 453 
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The papain-like proteinase, PLpro  454 

The more N-terminally-located PLpro is the larger (~2000 aa) of the two proteins (for review, see 455 
Baez-Santos et al., 2015; Lei et al., 2018), and, in SARS-CoV, is a membrane-associated, 456 
polyfunctional entity (Harcourt et al., 2004). Sequence modelling of SARS-CoV-2 PLpro suggested the 457 
presence of 6TM domains towards the C terminus, with the majority of the protein extending into 458 
the cell cytoplasm (Angeletti et al., 2020). In other coronaviruses, the enzyme is also capable of 459 
hydrolysing ubiquitin from protein substrates (Barretto et al., 2005; Ratia et al., 2006), as well as 460 
removing the ubiquitin-like protein interferon-stimulated gene 15 (ISG, Link to UniProt) from ISG-461 
conjugated proteins (Yang et al., 2014). Using the orthologous proteinase from the mouse hepatitis 462 
coronavirus, analysis of three distinct structural domains suggested that the papain-like proteinase 463 
domain coincided with the deubiquitinylating and deISGylating functions (Chen et al., 2015). In 464 
SARS-CoV, the PLpro also contains an ADRP functional phosphatase domain directed at ADP-ribose-465 
1’’-phosphates, although the functional significance of the hydrolase activity may be less impactful 466 
than the capacity to bind ADP-ribose, at least for the enzyme from HCoV-229E (Putics et al., 2005). 467 
This domain is thought to contribute to processing of the viral subgenomic RNAs and the 468 
suppression of the innate immune system through reducing interferon production (Lei et al., 2018). 469 

Investigating the peptidase activity of SARS-CoV PLpro suggested a preference for larger proteins 470 
(ubiquitinated or ISGylated) rather than simpler fluorescent-tagged oligopeptide substrates (Lindner 471 
et al., 2005; Lindner et al., 2007; Baez-Santos et al., 2014; Ratia et al., 2014) making screening more 472 
complicated. 473 

The chymotrypsin-like proteinase, 3CLpro  474 

The smaller proteinase from SARS-CoV-2 is 3CLpro (sometimes called the main prote(in)ase, Mpro). In 475 
silico docking models of SARS-CoV-2 3CLpro has led to suggestions that particular existing antiviral 476 
agents, including velpatasvir and ledipasvir (licensed agents for treating hepatitis C when combined 477 
with sofosbuvir in the UK), should be screened for functional activity (Chen et al., 2020). A recent 478 
screen of ~10 000 compounds including approved drugs, candidate drugs and natural products used 479 
a substrate derived from the N-terminal autocleavage site of the SARS-CoV-2 3CLpro which was 480 
modified (methylcoumarinylacetyl-AVLQSGFR-Lys(Dnp)-Lys-NH2) to allow a FRET-based assay (Jin et 481 
al., 2020). The same substrate was used in a screen of the equivalent enzyme from the another 482 
coronavirus, HCoV-HKU1, which transferred to humans (Zhao et al., 2008). 483 

A number of inhibitors of the SARS-CoV 3CLpro proteinase have been described (Lu et al., 2006; Yang 484 
et al., 2006; Goetz et al., 2007), without progressing into the clinic. Recently, an in silico approach 485 
using orthologues of the SARS-CoV 3CLpro from other coronaviruses and enteroviruses allowed 486 
production and testing in vitro of a series of α-ketoamides (Zhang et al., 2020). One compound (11r) 487 
exhibited submicromolar potency against SARS-CoV 3CLpro in a cell-free FRET-based assay, and 488 
micromolar potency in a cell infection assay with SARS-CoV (Zhang et al., 2020). 489 

In a preliminary (not yet peer-reviewed) report, the SARS-CoV-2 3CLpro expressed in HEK293 cells was 490 
found to interact with histone deacetylase 2 (HDAC2) by affinity purification/mass spectrometry 491 
(Gordon et al., 2020b). A number of approved drugs target HDAC2 in the treatment of various T cell 492 
lymphomas, including romidepsin, belinostat, and vorinostat with nanomolar potency (Bradner et 493 
al., 2010). 494 

Targetting nucleotide turnover 495 

A relatively large proportion of the viral genome is inevitably devoted to nucleotide turnover. For 496 
SARS-CoV-2, this includes nsp7/nsp8/nsp12 as an RNA-dependent RNA polymerase; nsp13 as a 497 
helicase; nsp10/nsp14 as an 3'-to-5' exonuclease complex; nsp15 as an endoribonuclease and nsp16 498 
as a 2'-O-ribose methyltransferase. 499 

Remdesivir (currently in clinical trials to treat COVID-19), is described as a non-selective inhibitor of 500 
multiple RNA viruses, and has shown some efficacy in MERS-CoV and SARS-CoV infection of monkeys 501 
(de Wit et al., 2020). In in vitro investigations, the triphosphate analogue of remdesivir inhibited RNA 502 
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synthesis of MERS-CoV RNA-dependent RNA polymerase (primarily nsp8/nsp12 complexes derived 503 
from co-expression in insect cells of a construct containing nsp5, nsp7, nsp8 and nsp12) with an IC50 504 
value of 32 nM when nucleotide levels were low, increasing to 690 nM at higher nucleotide 505 
concentrations (Gordon et al., 2020a). In silico modelling identified that remdesivir, as well as the 506 
approved antiviral drugs ribavirin, sofosbuvir and tenofovir could bind tightly to the active site of 507 
nsp12 from SARS-CoV-2, based on the crystal structure of SARS-CoV (Elfiky, 2020). 508 

However, ribavirin alone had no significant effect in a clinical trial with SARS patients, although a 509 
combination of ribavirin with lopinavir-ritonavir and corticosterone had lower rating of ARDS and 510 
death (for review, see Zumla et al., 2016). In-depth analysis has not been completed with MERS 511 
patients, although an ongoing Phase 2 clinical trial for MERS uses a combination therapy of 512 
lopinavir/ritonavir and interferon β1b (Arabi et al., 2020). 513 

Nsp13 is a helicase, which enables unwinding of duplex RNA. The exoribonuclease activity of nsp14 514 
sets the coronaviruses apart (Snijder et al., 2003), as the enzyme is suggested to remove damaging 515 
mutations from the genome (Eckerle et al., 2010; Sevajol et al., 2014). In other coronaviruses, the 516 
endoribonuclease nsp15 has some selectivity for hydrolysing polyU sequences (Hackbart et al., 517 
2020). This enables the virus to delay or minimise initiation of the innate immune system by 518 
hydrolysing negative sense polyU nucleotides, which activate the MDA5 system to evoke interferon 519 
production (discussed further below). Nsp16 is a methyltransferase, which uses S-adenosyl-L-520 
methionine as a co-substrate to assist in cap formation (Decroly et al., 2008).  521 

Protein: protein interactions in recombinant expression 522 

In a preliminary (not yet peer reviewed) report, a series of tagged recombinant proteins from SARS-523 
CoV-2 were expressed in HEK293 cells and then protein partners were identified by affinity 524 
purification/mass spectrometry (Gordon et al., 2020b). For nsp12 (RNA-dependent RNA polymerase) 525 
and nsp14 (3’-5’-exonuclease) of SARS-CoV-2, interactions with receptor interacting protein kinase 1 526 
(RIPK1) and inosine monophosphate dehydrogenase 2 (IMPDH2), respectively, were identified. For 527 
these two targets, there are established approved drugs. Thus, ponatinib, which is used to treat 528 
acute myelogenous leukemia or chronic myelogenous leukemia (Philadelphia chromosome), targets 529 
multiple protein kinases, inhibiting RIPK1 with an IC50 value of 12 nM (Najjar et al., 2015). 530 
Mycophenolic acid and ribavirin are IMPDH2 inhibitors with IC50 values of 20 nM (Nelson et al., 1990) 531 
and 1-3 µM (Wittine et al., 2012) ranges, respectively, with clinical uses in organ transplantation and 532 
antiviral therapy, respectively. 533 

Reservations about the use of ribavirin have already been noted above. Mycophenolic acid as a 534 
monotherapy was examined in a MER-CoV-infected non-human primate model, where the authors 535 
concluded it actually worsened the condition (Chan et al., 2015). 536 

Nsp13 (helicase) and nsp15 (endoribonuclease) have been described to bind to centrosome-537 
associated protein 250 (CEP250) and RNF41 (also known as NRDP1, Link to UniProt), respectively, in 538 
a preliminary report of recombinant expression (Gordon et al., 2020b). CEP250 is suggested to 539 
influence centrosome cohesion during interphase (de Castro-Miro et al., 2016) and to be elevated in 540 
peripheral T cell lymphomas (Cooper et al., 2011). The functional relevance of nsp13 interaction with 541 
CEP250 is not yet clear. RNF41 is an E3 ubiquitin ligase, which polyubiquitinates myeloid 542 
differentiating primary response gene 88 (MyD88, link to UniProt), an adaptor protein for Toll-like 543 
receptors, which allows activation of TBK1 and IRF3 (see below) and thereby increases type I 544 
interferon production (Wang et al., 2009). 545 

Targetting phospholipid turnover 546 

The lipid profile of viruses appears to be important in terms of viral entry into the cell, either as sites 547 
for anchoring or for endocytosis (for review, see Heaton and Randall, 2011; Mazzon and Mercer, 548 
2014). Replication of SARS-CoV is reported to take place associated with the endoplasmic reticulum 549 
in ‘replicative organelles’ incorporating convoluted membranes and interconnected double-550 
membrane vesicles, inferring a capacity for the virus to induce extensive reorganization of 551 
intracellular phospholipid membranes (Knoops et al., 2008). Three non-structural proteins from 552 
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SARS-CoV with transmembrane domains, nsp3 PLpro (see above), nsp4 and nsp6 when co-expressed 553 
in model cells prompted the formation of these double-membrane vesicles (Angelini et al., 2013), 554 
although it is unclear whether specific catalytic activities are necessary for this action. 555 

The lipidome of influenza virus (also a positive strand RNA virus) consists of glycerophospholipids, 556 
sterols (mainly cholesterol) and sphingolipids, with sphingolipids and cholesterol enriched compared 557 
to the host cell membrane (Gerl et al., 2012), but there does not yet appear to be a parallel 558 
investigation of SARS-CoV. 559 

Cytosolic phospholipase A2α, cPLA2α, hydrolyses phospholipid to produce lysophospholipids and free 560 
fatty acids. Using alphacoronavirus HCoV-229E-infected Huh-7 cells, inhibition of cPLA2α using 561 
pyrrolidine-2 at higher concentrations (20 µM) evoked an inhibition of viral titre (Muller et al., 2018). 562 
Arachidonoyl trifluoromethylketone, a non-selective inhibitor of multiple eicosanoid-metabolising 563 
enzymes including PLA2 isoforms, also inhibited viral titres at higher concentrations (Muller et al., 564 
2018). Transmission electron microscopy suggested that cPLA2α inhibition reduced the density of 565 
double-membrane vesicles (Muller et al., 2018). Analysis of lipid metabolites indicated that HCoV-566 
229E-infected Huh-7 cells showed increases in levels of ceramides, lysophospholipids and 567 
phosphatidylglycerols, with decreases in phosphatidic acids (Muller et al., 2018). 20 µM pyrrolidine-2 568 
inhibited the elevations in lysophospholipids and phosphatidylglycerols, but not the ceramides. 569 
Intriguingly, some selectivity of the involvement of PLA2α was suggested as pyrrolidine-2 also 570 
displayed antiviral activities against other members of the Coronaviridae (and Togaviridae) families, 571 
while members of the Picornaviridae family were not affected. 572 

Although speculative, there is the possibility that some of the benefits of glucocorticoid 573 
administration in the clinic might be the up-regulation of annexins, and the subsequent binding and 574 
concealment of membrane phospholipid from further metabolism (for review, see Lemmon, 2008). 575 
While clearly some distance from a validated target, since phospholipids are an essential component 576 
of enveloped viral proliferation, targeting the host availability of key structural lipids, particularly 577 
sphingolipids, has been proposed to be a useful strategy in preventing propagation of enveloped 578 
human RNA viruses, including influenza, HIV and hepatitis C (Yager and Konan, 2019). Currently, 579 
however, assays to screen inhibitors of cPLA2α are relatively limited. 580 

Targetting carbohydrate turnover 581 

Given that a number of the viral proteins, including the two structural proteins Spike and 582 
Membrane, are glycoproteins, there is clearly a diversion of sugars from the host. It is unclear as yet, 583 
whether specific sugars are involved and whether specific host glycosyltransferases are involved in 584 
the processing of coronavirus glycoproteins and might, therefore, form further tractable targets for 585 
drug discovery. Notably, in studies using site-directed mutagenesis of the Spike protein from SARS-586 
CoV, glycosylation was identified at three glutamine residues within the S1 region, with no loss of 587 
binding to ACE2-expressing cell of mutated (non-glycosylated) fragments (Chakraborti et al., 2005). 588 

The other viral structural proteins 589 

The E envelope protein 590 

The Envelope proteins of SARS-CoV, HCoV229E and MERS are small (<100 aa) single transmembrane 591 
domain proteins (see Figure 2) and constitute ion channels with selectivity for monovalent cations 592 
over monovalent anions (Wilson et al., 2004; Zhang et al., 2014) apparently forming homopentamers 593 
in model membranes (Pervushin et al., 2009; Surya et al., 2015). Infecting or transfecting the 594 
coronavirus E message into cells results in accumulation of protein in the Golgi region (Ruch and 595 
Machamer, 2012). Conserved cys residues proximal to the transmembrane domain internally within 596 
the virus are palmitoylated (Lopez et al., 2008), a post-translational modification suggested to allow 597 
an internal inflexion point in the protein (Ruch and Machamer, 2012). 598 

Hexamethylene-amiloride has been described as an inhibitor of the HIV-1 virus Vpu ion channel 599 
(Ewart et al., 2002) and to reduce virus proliferation in human macrophages in culture (Ewart et al., 600 
2004). Hexamethylene-amiloride, but not the clinically-used amiloride, inhibited the SARS-CoV 601 
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envelope protein-associated ion channel activity when expressed in HEK293 cells (Pervushin et al., 602 
2009). 603 
Amantadine has had multiple uses clinically, including in the therapy of Parkinson’s disease (for 604 
review, see Vanle et al., 2018). It has been used to treat influenza A infection through targeting the 605 
M2 ion channel (Pinto et al., 1992; Wang et al., 1993; Holsinger et al., 1994), although it is no longer 606 
recommended in the UK or US because of drug resistance (for review, see Li et al., 2015). 607 
Amantadine at higher concentrations (100 µM) was found to inhibit the SARS-CoV E protein 608 
expressed in model membranes (Torres et al., 2007). 609 

SARS-CoV E protein was identified as being pro-apoptotic upon transfection into Vero E6 monkey 610 
epithelial cells, where it localized to both plasma membrane and punctate cytoplasmic locations 611 
(Chan et al., 2009). Indeed, the SARS-CoV E protein’s ion channel function has been linked to calcium 612 
entry into endoplasmic reticulum/Golgi membrane complexes and the subsequent activation of the 613 
NLRP3 inflammasome, leading to interleukin-β (IL-1β) production (Nieto-Torres et al., 2015). 614 

siRNA targeting of the Envelope protein of SARS-CoV reduced virus release in culture media, without 615 
altering N and P gene expression in FRhK-4 monkey kidney epithelial cells (Lu et al., 2006). A similar 616 
observation was reported for the ORF4a protein (derived from the Orf4a gene) of HCoV229E (Zhang 617 
et al., 2014). Infecting mice with SARS-CoV in which the E protein ion channel function was disrupted 618 
showed unchanged viral proliferation but reduced IL-1β and oedema levels in the lungs and better 619 
survival over 10 days post-infection (Nieto-Torres et al., 2014). 620 

In a preliminary (as yet, unreviewed) report, the E protein of SARS-CoV-2 has been reported to 621 
interact with BRD2/BRD4 BET family bromodomain kinases when expressed in HEK293 cells (Gordon 622 
et al., 2020b). JQ1 and RVX208 are BRD2/4 inhibitors with IC50 values with 40-120 and 50-1800 nM 623 
ranges, respectively. 624 

The M membrane protein 625 

The membrane protein is usually regarded as the most abundant protein in the coronavirus 626 
envelope (see Figure 2) and is of intermediate size in SARS-CoV-2 (222 aa). It is thought to assist in 627 
viral assembly by collating the other surface structural proteins (Ruch and Machamer, 2012).  628 

The N nucleocapsid phosphoprotein 629 

The N protein is of moderate size in SARS-CoV-2 (419 aa), highly basic and binds the viral RNA as a 630 
dimeric entity (Fan et al., 2005) into nucleocapsids (see Figure 2), which afford protection for the 631 
viral genome, while also providing access for replication at appropriate times (for review, see 632 
McBride et al., 2014). In a preliminary (not yet peer reviewed) report, the N protein of SARS-CoV-2 633 
was tagged and expressed in HEK293 cells and then protein partners were identified by affinity 634 
purification/mass spectrometry (Gordon et al., 2020b). The N protein was suggested to interact with 635 
casein kinase 2 (CK2), La-related protein 1 (LARP1, Link to UniProt) and stress granule protein Ras 636 
GTPase-activating protein-binding protein 1 (G3BP1, Link to UniProt). CK2 phosphorylates a broad 637 
range of cellular targets, mostly in the nucleus, to regulate development and differentiation (for 638 
review, see Gotz and Montenarh, 2017). Although not in use clinically, two inhibitors are described 639 
to target CK2 with high affinity. Silmitasertib is a CK2 inhibitor with an IC50 value of 1 nM (Pierre et 640 
al., 2011), while TMCB has a Ki value of 21 nM (Janeczko et al., 2012). LARP1 is an RNA-binding 641 
protein, which releases RNA when phosphorylated by mTORC1 (Fonseca et al., 2015; Hong et al., 642 
2017). LARP1 seems to preferentially bind 5’-terminal oligopyrimidines with an as-yet unclear 643 
cellular role (Philippe et al., 2020). Of the three targets suggested to associate with SARS-CoV-2 N 644 
phosphoprotein, G3BP1 seems a relevant focus for therapy against COVID-19. G3BP1 regulates the 645 
innate immune response (Kim et al., 2019; Liu et al., 2019; Wiser et al., 2019; Yang et al., 2019) and 646 
stress granules reduce the replication of MERS-CoV (Nakagawa et al., 2018), so there is a potential 647 
for targetted drug discovery.  648 

Interactions with the host innate immune system 649 
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SARS-CoV produces proteins that interfere with interferon pathways (nsp1, nsp3, nsp16, ORF3b, 650 
ORF6, ORF9b, M and N proteins, Wong et al., 2016) and NLRP3 inflammasome activators (E, ORF3a, 651 
ORF8b) which are closely related to orthologues found in SARS-CoV-2. Fung et al (2020) have 652 
recently reviewed the molecular aspects whereby SARS-CoV and, by inference, SARS-CoV-2, evades 653 
immune surveillance, activates the inflammasome and causes pyroptosis. Other coronaviruses may 654 
give an indication as to how this is happening. HCoV-229E rapidly kills dendritic cells, while 655 
monocytes are much more resistant. The rapid invasion of, and replication in, dendritic cells kills 656 
them within a few hours of infection (Mesel-Lemoine et al., 2012). Dendritic cells are sentinel cells in 657 
the respiratory tract, and plasmacytoid dendritic cells are a crucial antiviral defence via interferon 658 
production, and by modifying antibody production. Thus, these viruses can impair control of viral 659 
dissemination and the formation of long-lasting immune memory. Penetration of SARS-CoV-2 660 
infection deep into the lungs, and eventually the alveolae, results in the ‘cytokine storm’ which 661 
accompanies pneumonia and lung fibrosis and is probably a major determinant of the necessity for 662 
intubation, and also mortality (Shi et al., 2020b). It is currently not known what specific factor/s 663 
differentiate the patients who develop this; although mortality among younger health workers may 664 
indicate that initial viral load may play a role. Immunological agents which can prevent or control the 665 
‘cytokine storm’ could therefore have a major effect on necessity to intubate and mortality. 666 
Tocilizumab is a monoclonal antibody targeting interleukin-6 receptors, as a means to interfere with 667 
the effects of chronic autoimmune disorders such as rheumatoid arthritis. The Chinese Clinical Trials 668 
Registry has two studies that are designed to evaluate tocilizumab efficacy in patients with severe 669 
COVID-19 pneumonia (Registration Numbers ChiCTR2000029765 and ChiCTR2000030442). Similarly, 670 
anakinra, which is a slightly modified version of an endogenous antagonist of interleukin-1 671 
receptors, is being investigated in clinical trials in multiple locations in patients with COVID-19 672 
infection (NCT04324021, NCT04330638 and NCT02735707). 673 

It has been reported that in stage III of COVID-19, a critical point with a high viral load and severe 674 
respiratory involvement, lungs of patients appear with ‘ground-glass’ patches in CT scans, while 675 
autopsy reports indicate that the lungs are filled with a ‘clear liquid jelly’ (Shi et al., 2020c; Xu et al., 676 
2020), similar to an observation in drowning victims. On the hypothesis that inflammation-driven 677 
hyaluronan production (via hyaluronan synthase 2, HAS2, Link to UniProt), and associated water 678 
retention may be critical; a recent study proposed therapy via administration of recombinant 679 
hyaluronidase or inhibitors of HAS2 (Shi et al., 2020c). 680 

The interaction between the virus and the innate immune system is complex and multifactorial, with 681 
temporal intricacies. It is beyond the scope of this review to identify all the multiple components and 682 
so we discuss here those pathways we consider most tractable. 683 

Viral nucleotides and MDA5/MAVS/Interferon production 684 

The positive sense RNA of coronaviruses is translated to produce the replication machinery, which 685 
allows complementary negative sense RNA to be synthesised, which itself is the template for the 686 
synthesis of positive strand RNA. As a consequence, double-stranded RNA is produced, which act as 687 
a pathogen-associated molecular pattern (PAMP) targetting MDA5 (interferon induced with helicase 688 
C domain I, also known as melanoma differentiation antigen 5, Kato et al., 2006) from the RIG-1-like 689 
receptor family of cytoplasmic pattern recognition receptors (for reviews, see Schlee, 2013; Bryant 690 
et al., 2015). MDA5 differs from RIG-1 (DexD/H-box helicase 58, also known as retinoic acid-inducible 691 
gene 1) in recognising longer dsRNA (Kato et al., 2006; Goubau et al., 2014), and it has been 692 
proposed this differentiates the sensing of positive-stranded viruses by MDA5 compared to negative 693 
strand virus sensing by RIG-I (Kato et al., 2006; Goubau et al., 2013). RIG-1-like receptors have an N-694 
terminal caspase activation and recruitment domain (CARD), which shows ligand-dependent 695 
interaction with CARDs from other proteins, such as mitochondrial antiviral signalling protein (MAVS, 696 
Link to UniProt). MAVS activates IKK family kinases, such as TANK binding kinase (TBK1) and IKK-ε, 697 
leading to the phosphorylation of interferon regulatory factors, such as IRF3 (Link to UniProt) and 698 
IRF7 (Link to UniProt). This induces the transcription of Type I interferon genes, such as interferon-β 699 
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and CCL5 (also known as RANTES) (Doyle et al., 2002; Fitzgerald et al., 2003; Sharma et al., 2003). 700 
MAVS present in peroxisomes is also able to recruit short-acting, interferon-independent defense 701 
factors (Dixit et al., 2010). 702 

The ORF9b protein from SARS-CoV has also been reported to target mitochondrial MAVS to limit the 703 
interferon response, as well as triggering proteolysis of dynamin-like protein 1 (Link to UniProt) 704 
thereby prompting the formation of mitochondria-associate autophagosomes claimed to create 705 
‘havoc’ in energy production in infected cells (Shi et al., 2014). In a preliminary (as yet, unreviewed) 706 
report, ORF9b of SARS-CoV-2 has been reported to interact with translocases of outer membrane 70 707 
(Tom70, Link to UniProt) when expressed in HEK293 cells (Gordon et al., 2020b) Tom70 activates 708 
mitochondrial IRF3 (Liu et al., 2010) and so this is a potential locus for pharmacological intervention, 709 
but as yet with no inhibitors described in the literature.  710 

A number of other coronavirus proteins have been identified to influence the IRF3 pathway to 711 
restrict interferon production. This includes the MERS-CoV PLpro proteinase (Yang et al., 2014), as 712 
well as the ORF6 and Nucleocapsid proteins from SARS-CoV (Kopecky-Bromberg et al., 2007). The 713 
ORF6 protein of SARS-CoV has also been described to reduce the activity of a series of karyopherin-714 
dependent host transcription factors (Sims et al., 2013). Karyopherin is an importin, which traffics 715 
proteins between the cytoplasm and the nucleus (for review, see Kosyna and Depping, 2018; Guo et 716 
al., 2019). 717 

Translocases of outer membrane 70 (Tom70, Link to UniProt) activates mitochondrial IRF3 (Liu et al., 718 
2010). The Orf9b protein of SARS-CoV-2 has been reported to interact with Tom70 when expressed 719 
in HEK293 cells (Gordon et al., 2020b). 720 

Clearly, the induction and suppression of interferon production are central to numerous human 721 
diseases and have been extensively studied; the ‘trick’ to treat COVID-19 will be to identify a novel 722 
angle for therapeutic exploitation. 723 

nsp1 724 

Working with SARS-CoV (not SARS-CoV-2), Pfefferle and colleagues used yeast two-hybrid screens to 725 
identify interactions between the viral and human proteomes (Pfefferle et al., 2011). They identified 726 
an interesting interaction between viral Nsp1 and a group of host peptidyl-prolyl cis-trans-727 
isomerases (PPIA, PPIG, PPIH and FKBP1A, FKBP1B), all of which modulate the calcineurin/NFAT 728 
pathway important in immune activation (reviewed by Hogan et al., 2003). The nsp1 protein acts on 729 
these to activate NFAT signalling and immune activation. Cyclosporine A, an inhibitor of this 730 
pathway, has used for several decades to control transplant rejection and some autoimmune 731 
diseases and, in a simple in vitro assay, cyclosporine inhibited SARS-CoV transcription/replication in 732 
(non-immune-system) cells (Pfefferle et al., 2011). SARS-CoV-2 has an nsp1 protein closely related to 733 
that of SARS-CoV (Dong et al., 2020; Srinivasan et al., 2020), though its effect on the NFAT pathway 734 
seems not to have been reported. Nevertheless, cyclosporine has been shown to inhibit SARS-CoV2 735 
in an in vitro Vero cell-based assay in a preliminary report (as yet not peer-reviewed, Jeon et al., 736 
2020). It has therefore been suggested as a drug target (see, for example, Li and De Clercq, 2020). It 737 
may seem paradoxical to suggest an inhibitor of immune activation as a treatment for viral disease, 738 
but for the subgroup of patients that might suffer cytokine storms (Mehta et al., 2020), the double-739 
action might be useful. 740 

ORF3a, ORF6, ORF8 and other viral proteins 741 

The ORF3a protein of SARS-CoV appears to bind calcium in a cytoplasmic domain (Minakshi et al., 742 
2014) and to elicit a response from the innate immune system by enhancing the ubiquitination of 743 
apoptosis-associated speck-like protein containing a CARD (Asc, Link to UniProt), which in turn 744 
activates the NLRP3 inflammasome and caspase 1 (Siu et al., 2019). The potential for targetting Asc 745 
and the NLRP3 inflammasome for therapeutic benefit in inflammatory conditions has recently been 746 
reviewed (Mangan et al., 2018), although there are no inhibitors in the clinic as yet.  747 
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In SARS-CoV, the Orf8a and Orf8b genes became separated as the disease progressed by a 29-748 
nucleotide deletion (Chinese SARS Molecular Epidemiology Consortium, 2004; Oostra et al., 2007). 749 
The Orf8a gene of SARS-CoV encodes a short (31 aa, 1 TM, Link to UniProt) protein, which forms a 750 
cation channel of predicted pentameric structure (Chen et al., 2011). In SARS-CoV-2 and a bat-751 
derived coronavirus, in contrast to the SARS-CoV-2 genome, Orf8 encodes a continuous 121 aa ORF8 752 
protein (Cagliani et al., 2020). Given that sequence analysis of different strains of SARS-CoV-2 753 
suggests that the Orf8 locus displays only limited evidence of positive selection (Cagliani et al., 754 
2020), it seems germane to investigate the profile of ORF8 protein in more depth. Sequence 755 
comparisons led to prediction of secondary structure composed of an α-helix and a β-sheet 756 
containing six strands (Chan et al., 2020), but there appears not to be any literature as to whether 757 
this entity is a functional ion channel. 758 

In a preliminary (as yet, unreviewed) report, the ORF14 protein (Link to UniProt) of SARS-CoV-2 has 759 
been reported to interact with NOD-like receptor X1 (NLRX1), proteinase-activated receptor 2 760 
(PAR2/F2RL1) and NEDD4 family-interacting protein 2 (NDFIP2, impdh2 Link to UniProt), among 761 
other proteins of the IκB/NFκB pathway, when expressed in HEK293 cells (Gordon et al., 2020b). At 762 
the moment, there are no approved drugs targeting PAR2, although AZ3451 (Link to GtoP) acts as a 763 
negative allosteric modulator with pIC50 values of 5-23 nM (Cheng et al., 2017). 764 

There is a limited insight into the roles or potential exploitability of the remaining range of other 765 
viral proteins (nsp2; nsp9; nsp11, proteins Orf3b; ORF6; ORF7a; ORF7b; ORF10). 766 

Animal models of SARS-CoV-2 infection 767 

The spike glycoproteins in SARS-CoV and MERS-CoV are crucial for host specificity and jumping 768 
between species, e.g. from bats to humans (Lu et al., 2015), and from dromedary camels to humans 769 
(MERS-CoV) and also the recent cross-over of a HKU2-related coronavirus to pigs as a Swine Acute 770 
Diarrhoea Syndrome (SADS-CoV) (Zhou et al., 2018). SADS-CoV appears to influence the innate 771 
immune system by reducing interferon-β production evoked through IPS-1 and RIG-I pathways, but 772 
not through IRF3, TBK1 and IKKε (Zhou et al., 2020). 773 

ACE2, as an anchoring point for the Spike glycoprotein, is present throughout the animal kingdom, 774 
but small structural differences are critical for interaction with the spike protein (Li et al., 2020b; 775 
Luan et al., 2020). Key sequences of the Spike protein from SARS-CoV and SARS-CoV-2 are 776 
responsible for binding to ACE2. Luan et al. (2020) found that the key residues in S protein, from 777 
SARS-CoV and SARS-CoV-2, recognised in ACE2 from dog, cat, pangolin and Circetidae mammals 778 
(simulated through homology modelling) were broadly similar. Mouse ACE2 is inefficient in 779 
prompting entry of both SARS-CoV and SARS-CoV-2 (Fung et al., 2020). Cats and dogs suffer from 780 
their own specific coronavirus infections (e.g. canine respiratory coronavirus, feline coronavirus) 781 
without significant cross-over to humans. A preliminary (as yet lacking peer review) very recent 782 
report has suggested that cats and ferrets are sensitive to SARS-CoV-2, but dogs, pigs, chickens and 783 
ducks are much less sensitive (Shi et al., 2020a). Ferrets, which have previously been used as models 784 
for respiratory tract infections,and retained the SARS-CoV-2 virus in the respiratory tract, while. Shi 785 
et al. (2020) showed that the infection was transmitted between cats by aerosol (which may have 786 
implications for confinement); infected cats subsequently produced antibodies (Shi et al., 2020a). 787 

The Syrian hamster has been used as a model for SARS-CoV (Roberts et al., 2005; Roberts et al., 788 
2006; de Wit et al., 2013) and studies with mice and Syrian hamsters are ongoing with SARS-CoV-2. A 789 
preliminary report (as yet not peer-reviewed) suggests that monkeys can be infected and show signs 790 
of sickness similar to COVID-19, producing antibodies which minimize the signs of subsequent 791 
infection (). In a small study where three juvenile (3-5 years old) and two mature (15 years old) 792 
rhesus macaques were infected intratracheally with the SARS-CoV-2 virus, all the monkeys showed 793 
symptoms of inflammation and interstitial pneumonia, with a greater apparent severity in the older 794 
animals (Yu et al., 2020). 795 

Thus, while there is intensive research in animal models, a clearly validated model is still not 796 
apparent. 797 
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Inter-individual variations in susceptibility 798 

Given the similarities in the viruses and their symptoms, there is clearly a value to comparing the 799 
profiles of sufferers from the original SARS and subsequent MERS outbreaks with COVID-19 to 800 
evaluate the risk factors associated with each event individually and collectively. A detailed 801 
consideration is beyond the scope of this review, but there are some obvious questions to ask (not in 802 
an order of priority).  803 

1. What factor/s determine resistance to infection?  804 
It is apparent that many individuals who test positive for SARS-CoV-2 infection only 805 
experience ‘mild’ symptoms, others suffer a level of debilitation requiring hospitalization 806 
with limited supervision, and a third group require assisted breathing. 807 

2. Is blood group a predictor? 808 
There is preliminary evidence (as yet, not peer-reviewed) suggesting that people with 809 
type A blood might be more at risk of COVID-19 than those with other blood types (Zhao 810 
et al., 2020). 811 

3. Are there ‘simple’ genetic markers which predict this variation? 812 
For example, are single nucleotide polymorphisms/haplotypes for key targets (including 813 
ACE2, TMPRSS2, etc, Delanghe et al., 2020) associated with higher or lower damage in 814 
humans infected with SARS-CoV, MERS-CoV or SARS-CoV-2? 815 

4. Reports suggest that there is a preponderance of male victims of COVID-19, for example 816 
in Spain (Instituto de Salud Carlos III, Ministry of Science & Innovation, Spain. Retrieved 817 
on 2020-03-25, referring to data from 2020-03-24). What might be the cause of this 818 
sexual divergence?  819 

5. Is smoking history a predictor of variation? 820 
One potential explanation for the relatively high proportion of male victims has been 821 
suggested to be previous smoking history (Cai, 2020; Olds and Kabbani, 2020; Vardavas 822 
and Nikitara, 2020), clearly a general risk factor for many diseases. Is there evidence 823 
from the SARS and MERS outbreaks to suggest a commonality of susceptibility?  824 

6. What is the impact of contracting the virus on individuals with other underlying 825 
conditions?  826 
For example, what are the mechanism/s underlying why some sufferers of hypertension 827 
and/or diabetes might be at higher risk (https://www.immunopaedia.org.za/breaking-828 
news/why-are-hypertension-and-diabetes-patients-at-high-risk-of-severe-covid-19/)? Is 829 
there evidence that patients on ACE inhibitors or angiotensin receptor blockers were at 830 
higher risk with SARS-CoV and MERS-CoV infections and, currently, for SARS-CoV-2 831 
infection?  832 

7. How will the evolution of the virus alter rates of infection and the severity of symptoms? 833 
Some level of mutation is to be expected, and indeed has been noted for the SARS-CoV-834 
2. At the moment, it is too early to identify the significance of any influence of these 835 
mutations on the course of COVID-19. 836 

Some of these questions are more tractable since the SARS and MERS outbreaks because of the 837 
strides being made in sophisticated molecular biological techniques (e.g. NextGen Sequencing). An 838 
additional distinction compared to the previous outbreaks is the major increase in patient numbers 839 
associated with COVID-19, allowing greater comparisons to be made in many more geographical 840 
locations. 841 

Inevitably other questions will form as greater detail becomes available. 842 

Conclusion and recommendations 843 

This review has concentrated on the prevailing hypothesis that an essential first step in infection is 844 
SARS-CoV-2 binding to ACE2 and for TMPRSS2 to prime the viral Spike protein. We further 845 
hypothesise that both proteins must be expressed on a target cell for the virus to gain entry. 846 
TMPESS2 has an extensive cellular expression profile, whereas ACE2 is more limited and is usually at 847 
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low levels, unless increased by risk factors such being sex, age, and smoking history, so is likely to be 848 
rate-limiting. Other potential target proteins such as cathepsin L or B0AT1 may also prove important.  849 

Currently, although there are no drugs approved for the treatment of patients with COVID-19, the 850 
pandemic has triggered a stampede into clinical trials with both approved and investigational agents. 851 
The pharmacological rationale for these trials is sometimes obscure, but there is a logic to focus on 852 
viral entry and replication, as well as limiting the host immune response. 853 

For the immediate term, the highest priority would be to investigate known antivirals to mitigate 854 
effects of COVID-19. For the longer term, a vaccine (for review, see Amanat and Krammer, 2020) 855 
seems to hold the most promise to reduce COVID-19 damage. There is also a role in the mid-term, 856 
however, for drug discovery conducted in mainstream pharmacology labs. The goal here would be 857 
an international co-ordinated approach to drug re-purposing; examining the spectrum of licensed 858 
drugs (likely to be less than 2000, varying dependent on jurisdictions). These would ideally be 859 
screened in a co-ordinated, blinded fashion in multiple labs simultaneously to account for any minor 860 
methodological differences. This requires the re-opening of screening and protein biosynthesis labs 861 
closed at the start of the pandemic, while ensuring that workers are kept safe.  862 

If one were to write a Target Product Profile for a drug to treat COVID-19, several parallel profiles 863 
can be identified. There are clear considerations, which may be identified as desirable 864 
pharmacodynamic, screening methodologies, drug metabolism and pharmacokinetic and 865 
formulation profiles.  866 

From a pharmacodynamic perspective, a priority would be to screen the proteinases identified in 867 
this review (ACE2, TMPRSS2, ADAM17, cathepsin L, cathepsin B, PLpro and 3CLpro). A second parallel 868 
stream would assess inhibitors of the viral RNA polymerase and endoribonuclease complexes, as 869 
well as the ion channel functions of the viral Envelope (and potentially the Orf8 protein). Clearly 870 
there are multiple other targets, which might bear fruit, and so further studies should assess the 871 
tractability of B0AT1/SLC6A19, B0AT3/SLC6A18, IMPDH2 and HAS2. Further, the molecular 872 
mechanism of action of ivermectin should be assessed, since it has recently been shown to inhibit in 873 
vitro SARS-CoV-2 replication (Caly et al., 2020). This agent is used clinically as an anthelmintic, 874 
probably through blocking invertebrate glutamate receptors although it also inhibits mammalian 875 
glycine receptors and acts as a positive allosteric modulator of other mammalian ligand-gated ion 876 
channels. 877 

From a screening aspect, biophysical and biochemical screens would probably take a matter of days-878 
to-weeks. Following mass availability of the recombinant proteins involved, the capacity for 879 
inhibition should be assessed using a library of already approved drugs. Biophysical methods can be 880 
applied, such as surface plasmon resonance or biolayer interferometry, to monitor the affinity of 881 
interaction between host ACE2 and viral spike glycoprotein in the presence of these agents, as well 882 
as the relevant proteins where multimerization is critical, such as the trimeric Spike glycoprotein. 883 
Assessing the remainder of the targets would likely adopt standard, fluorescent-based 884 
pharmacological methodologies.  885 

If the assay involves the use of viral proteins, the constructs should acknowledge the inevitable 886 
mutations which the viral genome has/will undergo. 887 

An overarching priority for the in vitro screening would be to recognise and replicate, as much as 888 
possible, relevant features of the virus and its lifecycle. This would include post-translational 889 
modifications of the viral proteins, such as glycosylation of the Spike and Membrane proteins. 890 
Additionally, while the high throughput screens described above for identifying inhibitors associated 891 
with components of the viral entry system, such as ACE2, should be confirmed in more translational 892 
assays, such as have been described for HIV cell entry in an automatable format (Bradley et al., 893 
2004). 894 

A desirable element would also be to minimise adverse effects on the cardiovascular and respiratory 895 
system, given the high incidence of damage described associated with those systems (Esler and 896 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2373


Esler, 2020; Li et al., 2020a; Lippi et al., 2020). Candidate drugs should also not increase activity of 897 
the IL-6 (or any other pro-inflammatory cytokine) pathway to avoid provoking a cytokine storm. 898 

If a similar approach were taken to the ways in which targetted therapy is applied for certain types 899 
of cancer, there would be an increased benefit in a multimodal strategy. Thus, in cancers where 900 
EGF/EGF receptors are involved, it is possible to target the ligand using chelating antibodies, to 901 
antagonise the receptor using blocking antibodies, to use specific antibodies to prevent dimerization 902 
of the receptor and to inhibit the catalytic activity of the receptor with small molecular inhibitors. It 903 
should be possible to reproduce this approach by simultaneously targetting several steps in the viral 904 
cycle (while naturally being cognisant of the potential for phenomena of drug:drug interactions, for 905 
instance in terms of convergent pathways of drug metabolism). This approach, enacted for the 906 
treatment of hepatitis C and human immunodeficiency viruses, for example, should also show 907 
benefit in reducing the capacity for drug-driven mutation in the enzyme. 908 

From a DMPK perspective, a beneficial profile for any agent would avoid drug:drug interactions by 909 
not converging on key metabolic enzymes and/or transporters. Ideally, a once-daily treatment 910 
regimen would be optimal, but if more frequent administration were needed, there is likely to be 911 
good patient adherence, given the public response to ‘spatial distancing’. From a formulation 912 
perspective, prophylactic use or for treatment of mild symptoms, an orally-administered or inhaled 913 
formulation would be appropriate. For more severe cases, where breathing is significantly impaired, 914 
an inhaled aerosolised version may be difficult to administer effectively; in this circumstance, a 915 
soluble version to be applied intravenously is likely to be useful. 916 

Micro-organisms, such as viruses and bacteria, continue to evolve to evade our immune systems and 917 
previous pandemics contributed to the decline and fall of civilizations. There is a widespread hope 918 
that the current pandemic will be controlled by the rapid development of a safe and efficacious 919 
vaccine. Clearly, there are major successes with vaccines targetting viral disease, but, to date no 920 
vaccine has been successfully produced to protect against human betacoronaviruses such as those 921 
causing SARS and MERS. On the contrary, multiple viral diseases have been successfully controlled 922 
by pharmacological agents. HIV-AIDS became more widespread in the last century and was 923 
associated with high morbidity and mortality. As a result of the discovery of novel pharmacological 924 
treatments, including specific antivirals, it is now a chronic condition and a cure has been effected in 925 
at least two individuals. Similarly, the highly variable hepatitis C virus has resisted vaccines, but can 926 
be treated with direct antiviral agents allowing elimination of the virus in a very high proportion of 927 
those treated. This gives us hope that the roadmap outlined in this review may provide some relief 928 
from COVID-19 (and indeed for viral threats yet to come). 929 
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Legend to Figures 944 

Figure 1: The SARS-CoV-2 life cycle.  945 

The novel virus uses angiotensin converting enzyme 2 (ACE2) to attach to target cells, including 946 

epithelial and endothelial cells, particularly in the lungs. SARS-CoV-2 requires the camostat-sensitive 947 

serine proteinase TMPRSS2 to prime the Spike protein for fusion and internalization. Thereafter, 948 

host cellular processes are exploited for viral replication and release from the cell.  949 

 950 

 951 

ACE2 is also expressed in high levels in the GI tract where it is associated with B0AT1/SLC6A19 that 952 
actively transports neutral amino acids across the apical membrane of epithelial cells. The serine 953 
proteinase ADAM17, present on cell surfaces, cleaves ACE2 to release an ectodomain of ACE2, 954 
including the active site, the circulation. This circulating form of ACE2 may also bind SARS-CoV-2, but 955 
this complex is predicted not to internalize and therefore could be exploited as a beneficial viral 956 
decoy. Recombinant ACE2 (GSK2586881) has been tested in Phase 2 clinical trials for the potential 957 
treatment of acute respiratory distress syndrome but it is not yet established if the compound will 958 
reduce viral load by acting as a decoy. 959 
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 968 

Figure 2: a cartoon of the virus structure, identifying the four structural proteins and the viral 969 

genome. 970 
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