23 research outputs found

    Borrowed alleles and convergence in serpentine adaptation

    Get PDF
    ACKNOWLEDGMENTS. We thank members of the L.Y. and K.B. laboratories for helpful discussions. This work was supported through the European Research Council Grant StG CA629F04E (to L.Y.); a Harvard University Milton Fund Award (to K.B.); Ruth L. Kirschstein National Research Service Award 1 F32 GM096699 from the NIH (to L.Y.); National Science Foundation Grant IOS-1146465 (to K.B.); NIH National Institute of General Medical Sciences Grant 2R01GM078536 (to D.E.S.); and Biotechnology and Biological Sciences Research Council Grant BB/L000113/1 (to D.E.S.)Peer reviewedPublisher PD

    Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus

    Get PDF
    Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals

    Whole genome duplication potentiates inter-specific hybridisation and niche shifts in Australian burrowing frogs Neobatrachus

    Get PDF
    Polyploidy plays an important role in evolution because it can lead to increased genetic complexity and speciation. It also provides an extra copy buffer and increases genetic novelty. While both common and well-studied in plants, polyploidy is rare in animals, and most polyploid animals reproduce asexually. Amphibians represent a dramatic vertebrate exception, with multiple independent sexually reproducing polyploid lineages, but very few cases have been studied in any detail. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful model animal polyploid system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We resolve the phylogenetic relationships among Neobatrachus species and provide further support that the three polyploid species have independent origins. We document higher genetic diversity in tetraploids, resulting from widespread gene flow specifically between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and current isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate variation on frogs with differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which in turn corresponds to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow into tetraploid lineages specifically. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on evolution of adaptation in animals

    Local-Scale Patterns of Genetic Variability, Outcrossing, and Spatial Structure in Natural Stands of Arabidopsis thaliana

    Get PDF
    As Arabidopsis thaliana is increasingly employed in evolutionary and ecological studies, it is essential to understand patterns of natural genetic variation and the forces that shape them. Previous work focusing mostly on global and regional scales has demonstrated the importance of historical events such as long-distance migration and colonization. Far less is known about the role of contemporary factors or environmental heterogeneity in generating diversity patterns at local scales. We sampled 1,005 individuals from 77 closely spaced stands in diverse settings around Tübingen, Germany. A set of 436 SNP markers was used to characterize genome-wide patterns of relatedness and recombination. Neighboring genotypes often shared mosaic blocks of alternating marker identity and divergence. We detected recent outcrossing as well as stretches of residual heterozygosity in largely homozygous recombinants. As has been observed for several other selfing species, there was considerable heterogeneity among sites in diversity and outcrossing, with rural stands exhibiting greater diversity and heterozygosity than urban stands. Fine-scale spatial structure was evident as well. Within stands, spatial structure correlated negatively with observed heterozygosity, suggesting that the high homozygosity of natural A. thaliana may be partially attributable to nearest-neighbor mating of related individuals. The large number of markers and extensive local sampling employed here afforded unusual power to characterize local genetic patterns. Contemporary processes such as ongoing outcrossing play an important role in determining distribution of genetic diversity at this scale. Local “outcrossing hotspots” appear to reshuffle genetic information at surprising rates, while other stands contribute comparatively little. Our findings have important implications for sampling and interpreting diversity among A. thaliana accessions

    Control of Simian Immunodeficiency Virus SIVmac239 Is Not Predicted by Inheritance of Mamu-B*17-Containing Haplotypes

    No full text
    It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome

    Repeated Low-Dose Mucosal Simian Immunodeficiency Virus SIVmac239 Challenge Results in the Same Viral and Immunological Kinetics as High-Dose Challenge: a Model for the Evaluation of Vaccine Efficacy in Nonhuman Primates

    No full text
    Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides a relevant model for the assessment of human immunodeficiency virus (HIV) vaccine strategies. To ensure that all macaques become infected, the vaccinees and controls are exposed to large doses of pathogenic SIV. These nonphysiological high-dose challenges may adversely affect vaccine evaluation by overwhelming potentially efficacious vaccine responses. To determine whether a more physiologically relevant low-dose challenge can initiate infection and cause disease in Indian rhesus macaques, we used a repeated low-dose challenge strategy designed to reduce the viral inoculum to more physiologically relevant doses. In an attempt to more closely mimic challenge with HIV, we administered repeated mucosal challenges with 30, 300, and 3,000 50% tissue culture infective doses (TCID(50)) of pathogenic SIVmac239 to six animals in three groups. Infection was assessed by sensitive quantitative reverse transcription-PCR and was achieved following a mean of 8, 5.5, and 1 challenge(s) in the 30, 300, and 3,000 TCID(50) groups, respectively. Mortality, humoral immune responses, and peak plasma viral kinetics were similar in five of six animals, regardless of challenge dose. Interestingly, macaques challenged with lower doses of SIVmac239 developed broad T-cell immune responses as assessed by ELISPOT assay. This low-dose repeated challenge may be a valuable tool in the evaluation of potential vaccine regimes and offers a more physiologically relevant regimen for pathogenic SIVmac239 challenge experiments

    A novel allele of ASY3 is associated with greater meiotic stability in autotetraploid Arabidopsis lyrata

    Get PDF
    In this study we performed a genotype-phenotype association analysis of meiotic stability in 10 autotetraploid Arabidopsis lyrata and A. lyrata/A. arenosa hybrid populations collected from the Wachau region and East Austrian Forealps. The aim was to determine the effect of eight meiosis genes under extreme selection upon adaptation to whole genome duplication. Individual plants were genotyped by high-throughput sequencing of the eight meiosis genes (ASY1, ASY3, PDS5b, PRD3, REC8, SMC3, ZYP1a/b) implicated in synaptonemal complex formation and phenotyped by assessing meiotic metaphase I chromosome configurations. Our results reveal that meiotic stability varied greatly (20–100%) between individual tetraploid plants and associated with segregation of a novel ASYNAPSIS3 (ASY3) allele derived from A. lyrata. The ASY3 allele that associates with meiotic stability possesses a putative in-frame tandem duplication (TD) of a serine-rich region upstream of the coiled-coil domain that appears to have arisen at sites of DNA microhomology. The frequency of multivalents observed in plants homozygous for the ASY3 TD haplotype was significantly lower than in plants heterozygous for ASY3 TD/ND (non-duplicated) haplotypes. The chiasma distribution was significantly altered in the stable plants compared to the unstable plants with a shift from proximal and interstitial to predominantly distal locations. The number of HEI10 foci at pachytene that mark class I crossovers was significantly reduced in a plant homozygous for ASY3 TD compared to a plant heterozygous for ASY3 ND/TD. Fifty-eight alleles of the 8 meiosis genes were identified from the 10 populations analysed, demonstrating dynamic population variability at these loci. Widespread chimerism between alleles originating from A. lyrata/A. arenosa and diploid/tetraploids indicates that this group of rapidly evolving genes may provide precise adaptive control over meiotic recombination in the tetraploids, the very process that gave rise to them
    corecore