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Abstract

Polyploidy has played an important role in evolution across the tree of life but it is still unclear

how polyploid lineages may persist after their initial formation. While both common and well-

studied in plants, polyploidy is rare in animals and generally less understood. The Australian

burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species

and offers a powerful animal polyploid model system. We generated exome-capture

sequence data from 87 individuals representing all nine species of Neobatrachus to investi-

gate species-level relationships, the origin and inheritance mode of polyploid species, and

the population genomic effects of polyploidy on genus-wide demography. We describe rapid

speciation of diploid Neobatrachus species and show that the three independently origi-

nated polyploid species have tetrasomic or mixed inheritance. We document higher genetic

diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asym-

metric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of

diploid species from each other. We also constructed models of ecologically suitable areas

for each species to investigate the impact of climate on differing ploidy levels. These models

suggest substantial change in suitable areas compared to past climate, which correspond to

population genomic estimates of demographic histories. We propose that Neobatrachus

diploids may be suffering the early genomic impacts of climate-induced habitat loss, while

tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we

demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the

evolution of adaptation in animals.
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Author summary

Polyploidy or whole genome duplication is rare in animals and usually polyploid animals

reproduce asexually. The Australian burrowing frogs of the genus Neobatrachus form an

interesting exception amongst vertebrates with multiple independently originated autotet-

raploid sexual species. We generated population genomic data from 87 animals represent-

ing all six diploid and three tetraploid species of Neobatrachus. We show that, while

diploid Neobatrachus species seem to be isolated from each other, their sister tetraploid

species experience substantial levels of gene flow, and have wider distributions. Further-

more, we observe asymmetric gene flow from diploids to tetraploids. Based on our geno-

mic and climate analyses we suggest that such inter-specific hybridization mediated by

whole genome duplication rescues species diversity and allows tetraploids to more easily

avoid impacts of climate-induced habitat loss.

Introduction

Polyploidy or whole genome duplications (WGDs) play important roles in ecology and evolu-

tion [1, 2]. Although polyploidization predominantly occurs in plants, polyploidy has also

played an important role in animal evolution. For instance, two ancient WGDs occurred early

in the vertebrate lineage [3], while more recent WGDs occurred in several animal groups,

including insects, molluscs, crustaceans, fishes, amphibians and reptiles [4–6]. The majority of

polyploid animals switch to diverse modes of asexual reproduction after polyploid formation

[4, 7, 8]. Amphibians, and more specifically anurans, are among very few exceptions exhibiting

multiple independent occurrences of diploid and sexually reproducing polyploid sister species

[9]. The most famous example is probably the clade of model frogs Xenopus which is enriched

with allopolyploids [10, 11]. Overall, polyploid occurrences in amphibia have been described

in at least 15 different families [12], which makes it the most frequent among sexually repro-

ducing vertebrates, possibly due to homomorphic (undifferentiated) sex chromosomes [13]

which do not require dosage compensation [14].

Here, we focus on a group of widely distributed, endemic, Australian burrowing frogs: Neo-
batrachus. This genus comprises six diploid (N. albipes, N. fulvus, N. pelobatoides, N. pictus, N.

sutor, N. wilsmorei; 2n = 24) and three tetraploid (N. aquilonius, N. kunapalari, N. sudellae;
4n = 48) species [15, 16], all characterised by bisexual reproduction [17]. Taxonomic status of

a previously described tetraploid species N. centralis has been redefined and synonymized with

N. sudelli [15], which was later changed to a version with fenimine termination N. sudellae, as

the species was named after a woman, Miss J. Sudell of Warwick [18]. Tetraploid species of

Neobatrachus were suggested to have independent origins based on mitochondrial DNA

(mtDNA) [19]. At least one of the tetraploid species—N. sudellae—was suggested to have origi-

nated through autotetraploidy rather than allotetraploidy, as they exhibit tetrasomic inheri-

tance and show a prevalence of tetravalent over bivalent formations during meiosis [17].

Neobatrachus species are well defined based on external morphology, male advertisement calls

and divergence at allozyme loci [20–22]. Generally, frog call structure differs among ploidies

with higher ploidy species having lower pulse rates, a trait linked to nuclear volume increase

with increasing ploidy [23]. Indeed, tetraploid Neobatrachus species have lower pulse number

and rate in their advertisement calls compared to diploids with multiple pulses in their calls

(however N. sutor (2n) and N. wilsmorei (2n) have calls with a single pulse). However, each of

the Neobatrachus species retain distinct calls [24, 25]. This differs from the more extensively
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studied gray treefrog, Hyla versicolor [26, 27], where tetraploids may have also originated from

multiple independent origins but have calls that are largely similar across lineages [28]. The

primary aim of our study is to resolve the phylogenetic relationships and reticulation of the

Neobatrachus species and describe the evolutionary origin of the tetraploid Neobatrachus
lineages.

While polyploidization has occurred frequently across the tree of life, the evolutionary ben-

efits of WGDs remain elusive. Polyploidy has been associated with greater tolerance to harsher

conditions, but it is not clear whether WGDs broadly provide a fitness advantage or are simply

a consequence of elevated rates of unreduced gamete formation [2, 29–31], which might be

more prone to occur in extreme environments. Polyploids of hybrid origin (allopolyploids)

may benefit from heterosis due to increased genetic variation, instantaneous shifts into inter-

mediate or new ecological niches, and the redundancy of independently segregating gene cop-

ies [2, 29]. However, newly formed polyploids are simultaneously subject to several

disadvantages perhaps most prominent of which is their low abundance compared to the

established non-polyploids [29]. Polyploids face strong frequency dependent selection because

they are unlikely to produce viable or fertile offspring if crossed with a diploid. Therefore, rare

polyploid types are at a disadvantage. Conversely, while autopolyploids retain many of the

same disadvantages as allopolyploids, the advantages of autopolyploidy are much less clear

[32]. Recent example of possible advantage of autopolyploidy in frogs comes from Odonto-
phrynus species [12, 33–35], where polyploids exhibited higher stress response and lower

nuclear abnormalities compared to the sister diploids coexisting in the same agroecosystems

[36]. In Neobatrachus, while tetraploid species are distributed sympatrically with some of the

diploid species, they are also able to occupy more arid areas across Australia [2, 19]. Here,

using a combination of climate, occurrence and genomic data, we test whether Neobatrachus
polyploids occupy larger or different niches and whether they may have a greater genetic adap-

tive potential in changing environments. The latter becomes critically important, since chang-

ing environments drive amphibian extinction rates, which continue to increase and are

comprised of many interdependent factors such as habitat loss, emergence and spread of dis-

eases, invasive species and pollution [37–40].

In the current study, we use an anchored hybrid enrichment approach (AHE) [41–44] to

resolve the phylogenetic relationships among Neobatrachus species, and to assess fine-scale

intra-specific genetic population structure. We also quantify the extent of hybridization

between the nine Neobatrachus species with a particular focus on taxa with contrasting ploi-

dies. Finally, we combine population dynamics assessments with changes in ecologically suit-

able areas for each species to describe population responses to climate changes.

Results

Evolutionary history of Neobatrachus genus

We generated sequence data and alignments for 439 targeted orthologous nuclear loci of 87

Neobatrachus individuals spanning the entire genus as well as nine Heleioporus individuals as

outgroups (see Methods). We filtered out six individuals which did not meet our missing data

threshold and six individuals where estimated ploidy did not correspond to the expected (see

Methods and S1 Table). Our further analysis includes 75 Neobatrachus individuals: 8 N. albipes
(2n), 8 N. fulvus (2n), 7 N. pelobatoides (2n), 5 N. pictus (2n), 9 N. sutor (2n), 5 N. wilsmorei
(2n), 14 N. sudellae (4n), 11 N. aquilonuis (4n), 8 N. kunapalari (4n). We then built a species

tree and gene trees from the sequenced loci with ASTRAL-II [45] using RaxML [46] (Fig 1A).

This revealed extensive conflict between gene genealogies and the species tree (Fig 1A, S1 Fig

and S2 Fig). Multidimensional scaling (MDS) of gene tree topologies suggested that nuclear
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loci constitute either two or four topology clusters (S3 Fig), indicating competing signal. To

investigate the population structure of Neobatrachus further we assessed it by ADMIXTURE

[47] on extracted polymorphism data (66,789 sites in total; see Methods; Fig 1B, Fig 2, S1 Fig,

S4 Fig). Overall, admixture clustering corresponded with the phylogenetic placement of the

individuals on the species tree (Fig 1 and S1 Fig).

We first focus on the evolutionary history of the diploid Neobatrachus species. Diploids

were clearly split at K = 7 and did not show admixed individuals (Fig 1, Fig 2 and S1 Fig).

However, the gene genealogies from diploid species only also show inconsistency among each

other (Fig 1C and S5 Fig). To distinguish between the scenarios of (1) rapid speciation and (2)

possible incomplete lineage sorting (ILS) and/or gene flow between the diploid species we esti-

mated genealogies conflict within loci by randomly sampling individuals representing each

species. If there has been rapid speciation we expect to see consistent genealogies within each

locus regardless of individual chosen to represent each species, but in case of ILS and/or gene

flow gene genealogies within one locus should remain in conflict with each other. We found

that within locus genealogies are consistent with each other and conflict remains only between

loci genealogies (S6 Fig), which supports the scenario of rapid speciation of the diploid species

without secondary contacts or persistent incomplete lineage sorting. This is also consistent

with clear ADMIXTURE clustering of the diploids (Fig 1B). In the absence of informative fos-

sil material, we estimated the approximate evolutionary timescale of the Neobatrachus diploid

species divergence (Fig 1C) using secondary calibrations [48]. Interspecific divergence times

provided support for relatively old (older than 4 Mya) origin of Neobatrachus species (Fig 1C),

which also argues in favor of rapid speciation rather than ILS explaining gene tree

inconsistencies.

Fig 1. Independent origins of Neobatrachus tetraploids and high levels of reticulation. (A) Gene trees, colored by clade, for 361 nuclear loci based on 2 individuals per

species show considerable incongruence and differ from the species trees (bold black topology). Conflict between gene tree clusters (S3 Fig) and the nuclear species tree

suggest non-bifurcating relationships between the species. (B) Pie charts represent summarised admixture proportions for each species (summing assignments for each

individual, S1 Fig, Fig 2) at optimal clustering with K = 7. Tetraploids (N. sudellae, N. aquilonius and N. kunapalari) show highly admixed ancestries. (C) Dated diploid-

only species tree. Colors represent consistency levels between gene genealogies with red being most conflicted and blue most consistent. Grey bars represent 95%

confidence intervals on the ages of nodes, noted in millions of years before present.

https://doi.org/10.1371/journal.pgen.1008769.g001
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The evolutionary history of the tetraploid Neobatrachus species is more obscure. However,

despite the conflict between gene genealogies and the species tree, they all demonstrate that

the three tetraploid species do not form a monophyletic group (Fig 1A). All three tetraploid

species showed admixture with each other and with local diploid species (Fig 1B, Fig 2 and S1

Fig). The differential assignment of each tetraploid individual within the species (the discrep-

ancies between the pie-charts on Fig 2) argues in favour of autopolyploid (non-hybrid) origin

with sequential unequal gene flow rather than allopolyploid (hybrid) origin (in this case

admixture assignments would show consistent mixed assignment of the tetraploid individuals

to both parental species).

In order to distinguish more clearly between allo- and autopolyploid origin of the tetra-

ploids we modeled expected allele frequency distributions for allo- and autotetraploids to

Fig 2. ADMIXTURE results (K = 7) shown separately for each species. According to the geographical locations of the sampled individuals, pie charts show the

probability of the assignment of the individual to one of the 7 individually colored clusters. Overlapping pie charts on the map have been moved just enough to appear

separate. Diploid Neobatrachus species (top 6: N. pelobatoides, N. albipes, N. wilsmorei, N. sutor, N. pictus, N. fulvus) are each assigned to separate clusters, while all three

tetraploid species (bottom 3: N. kunapalari, N. sudellae, N. aquilonius) show inter-species admixture.

https://doi.org/10.1371/journal.pgen.1008769.g002
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estimate the inheritance mode (see Methods). As previously shown [49, 50] allotetraploid indi-

viduals with disomic inheritance mode are expected to have an excess of intermediate fre-

quency alleles (AABB) rather than rare alleles (ABBB or AAAB). We simulate expectation of

the biallelic allele frequencies for autotetraploids by combining in a pairwise manner the align-

ments of the diploid individuals within the species, when combination of the diploids between

the species simulates expectations for allotetraploids. The allele frequencies distributions for N.

sudellae (4n) and N. aquilonius (4n) did not have the excess of intermediate alleles expected for

allotetraploids and seem to correspond to an autotetraploid origin (S8 Fig, see Methods). N.

kunapalari showed a mixed inheritance pattern, so we could not reject either allo- or autopoly-

ploid origins for this species. However, the most parsimonious explanation of such a pattern is

an autotetraploid origin with later extensive gene flow from a different (non-parental diploid)

or a different autotetraploid species. Overall, our results seem to support the previously sug-

gested autotetraploid origin of Neobatrachus tetraploid species [17, 19].

To further assess the complex demographic history of Neobatrachus, we performed Tree-

Mix [51] modeling where species relationships are represented through a graph of ancestral

populations (Fig 3A). The structure of the graph was inferred from allele-frequency data and

Gaussian approximations of genetic drift such that the branch lengths in the graph are propor-

tional to the amount of drift since populations split. We sequentially added up to 15 migration

events, showing saturation of the model likelihood at five additional migration edges on aver-

age for 30 runs of Treemix, each with a different seed for random number generation (Fig 3E).

We show an example of the inferred introgression events and the bifurcating graph for the

model with five migration events for the run that resulted in the highest maximum likelihood

(Fig 3A–3D). Inferred migration events (Fig 3B) indicate widespread directional introgression

and interploidy gene flow between the polyploid species, however, only two introgression

events had p-values lower than 0.05 in this particular run: from N. sudellae (4n) to N. kunapa-
lari (4n) and from N. sutor (2n) to N. kunapalari (4n). Since there was some variability in

inferred migration edges from run to run, to estimate the most frequently inferred migration

events we summed the significant inferred migration edges among 30 TreeMix runs with five

events allowed (Fig 3F). Migration events were found most frequently from N. sudellae (4n) to

N. kunapalari (4n) (19 of 30 runs) and from N. sutor (2n) to N. kunapalari (4n) (12 of 30

runs). Interploidy introgression events were mostly asymmetric and from diploids to tetra-

ploids, which corresponds with our ADMIXTURE cluster assignment results (Fig 1 and Fig 2).

Inferred introgression events are broadly congruent with clusters of conflicting gene-tree

topologies (S3 Fig). Each tetraploid Neobatrachus species (N. aquilonius, N. kunapalari, N.

sudellae) is sister to a diploid species in the TreeMix graphs (Fig 3A and 3B, tips highlighted in

bold) as well as in the species trees (Fig 1), which is consistent with previously suggested inde-

pendent origins for the tetraploid species [19].

As an additional test for determining historical hybridizations, we estimated the network

phylogeny of Neobatrachus using SNaQ [52] implemented in PhyloNetworks (version 0.11.0)

[53]. We found that the scenario with two hybridization events allowed supported the data the

best (see Methods, S9 Fig). The first inferred hybridization event suggests gene flow from the

N. aquilonius, N. fulvus, and N. sudellae ancestral branch into N. kunapalari (minor hybrid

edge γ = 0.343) (S9A Fig). The second inferred hybridization suggests gene flow from N. sudel-
lae into N. aquilonius (minor hybrid edge γ = 0.192) (S9A Fig).

Estimation of suitable distribution areas and demographic patterns

Tetraploid species have the highest nucleotide diversity among Neobatrachus species (Fig 4D

and S2 Table), which is likely due to gene flow directed to tetraploid taxa and introgression
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between tetraploids of different origin. This is supported also by Fst distances (S10 Fig), where

Fst distances between tetraploid species are the lowest, while Fst distances between tetraploids

and diploid are larger, and Fst distances between the diploid lineages are the highest, suggest-

ing stronger isolation.

To estimate the dynamics in population abundance over recent times, we measured Taji-

ma’s D, a summary statistic that measures the lack or excess of rare alleles in a population com-

pared to the neutral model. All of the Neobatrachus species have negative median values of

Tajima’s D, which suggests that none of the species are experiencing dramatic population

diversity decline (Fig 4C). We used the observed Tajima’s D values as a proxy for each species’

demographic patterns and compared them with estimated change in the suitable geographic

Fig 3. Widespread introgression between Neobatrachus species. (A) Bifurcating maximum likelihood tree produced by TreeMix. (B) Example of a graph produced

by TreeMix with 5 allowed migration events. (C) Scaled residual fit between observed data and predicted model in (A). Plot shows half of the residual covariance

between each pair of populations divided by the average standard error across all pairs. Positive residuals represent populations where the model underestimates the

observed covariance, meaning that populations are more closely related to each other in the data than in the modeled tree. Such population pairs are candidates for

admixture events. Similarly, negative residuals indicate pairs of populations where the model overestimates the observed covariance. Overall, the residual plot of the

model suggested that model fit could be improved by additional edges (migration events). (D) Scaled residual fit between observed data and predicted model in (B).

Compared to Fig 3C this suggests that, although the complexity of the species relatedness is not fully represented by the model, major gene flow events and their

direction were probably captured. (E) Box plots of 30 runs of TreeMix (each started with a different seed for random number generation) likelihood at different

numbers of allowed migration events; saturation starts after 3 additional migration edges. (F) Bar plot showing the number of times a particular directional migration

event was inferred in 30 TreeMix runs with 5 migration events allowed. We show only the events which were inferred more than twice.

https://doi.org/10.1371/journal.pgen.1008769.g003
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Fig 4. Diversity and differentiation of Neobatrachus species and geographical suitability estimates. (A) Example of the estimation of the suitable distribution area for

N. sutor, based on occurrence data and current climate. (B) Example of the projection of the suitable distribution area for N. sutor based on the past climate at around

20Kya at LGM (last glacial maximum). Note that the scales in A and B are the same; Australian continent here is larger due to lower sea levels at LGM. (C) Scatter plot

showing relative change of the predicted suitable area at the LGM and current conditions for each species as a function of Tajima’s D estimator. Diploid species show high

correlation between Tajima’s D and distribution area change (blue line, Pearson’s correlation -0.88 (R2 = 0.72, p-value = 0.02); (D) Hierarchical clustering of Neobatrachus
species based on mean nucleotide diversity within and between the species.

https://doi.org/10.1371/journal.pgen.1008769.g004
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area (Fig 4A–4C). In order to describe the ecological areas occupied by the different Neobatra-
chus species, as well as changes in those areas since the last glacial maximum (LGM) at around

20 Kya, we made use of occurrence data [54] (S11 Fig) and climate datasets [55]. We first per-

formed a PCA of reduced bioclimatic variables concentrating on one of the highly correlated

variables (r>0.85, Pearson correlation coefficient; see Methods) for individuals from the Neo-
batrachus occurrence data (S12 Fig). Using this substantially increased geographic sampling

compared to our sequenced sample set, we could see moderate clustering of the individuals by

species, which demonstrates that Neobatrachus species differ in their ecological (climatic)

occupancies.

We then modelled suitable distribution areas for each species separately with MaxEnt [56],

which applies machine learning maximum entropy modeling on the climate data at the geo-

graphical locations of the species occurrence data. Bioclimatic variables had different impacts

on the model for each species (S13 Fig), however, appeared to be more similar for sympatric

species (for example, N. sutor and N. wilsmorei) than for allopatric species (for example, N. pic-
tus compared to any other diploid species). By projecting the models built on the current cli-

mate data on the past climate data (at the last glacial maximum, LGM) we could estimate the

changes in the suitable habitat area since the LGM relative to the current suitable area for dif-

ferent species (Fig 4A–4C, S14 Fig and S15 Fig). We observed a correlation between the change

in the suitable habitat area and median Tajima’s D for the diploid Neobatrachus species (Fig

4C). As shrinkage in suitable habitat areas increases for a given diploid species, Tajima’s D val-

ues also increase. This suggests that climate change since LGM to current days may have

already had a negative effect on diploid Neobatrachus’ genetic diversity via loss of suitable hab-

itat even if populations are not obviously already getting smaller. Interestingly, tetraploid spe-

cies appear to be the outliers to this trend, which we suggest may be due to their highly

admixed genetic structure.

Discussion

We have investigated evolutionary history of the Australian burrowing frogs Neobatrachus
genus and the population genomic consequences of genome duplication in a vertebrate model

by generating and analysing nucleotide sequence data for 439 loci in 87 Neobatrachus individ-

uals, covering the entire genus, including the three currently recognized tetraploids. The

observation of non-bifurcating relationships between closely related species (Fig 1) is now

common [57–67], and is understood to be caused by either rapid speciation, or shared varia-

tion between species due to incomplete lineage sorting (ILS) or gene flow. Population structure

analysis revealed that each of the diploid species forms discrete clusters (Fig 1B and Fig 2), con-

sistent with their status as phylogenetically distinct species. However, topology inconsistencies

remained in the diploid only phylogenetic analysis (Fig 1C and S5 Fig). We show that random

sets of individuals representing each species does not change the topology of a single locus and

that inconsistency remains only between loci (S6 Fig). This suggests that diploid Neobatrachus
species experienced rapid speciation and currently do not share variation between the species

(no ILS or gene flow).

The tetraploids were assigned to a mixed set of clusters by population structure analysis,

suggesting gene flow between each other and with the diploid species from overlapping geo-

graphical areas (Figs 1, 2 and S1 Fig). Comparing allele frequency distributions at the biallelic

sites of the tetraploid individuals to the modelled expected distributions of autopolyploids with

tetrasomic inheritance and allopolyploids with disomic inheritance, we rejected the hypothesis

of the hybrid or allotetraploid origin of the two out of tree Neobatrachus tetraploid species–N.

sudellae and N. aquilonius (S8 Fig). However, extensive gene flow between the autotetraploids
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of the different origin and from ‘non-parental’ diploids to the autotetraploids can lead to

mixed inheritance, signs of which we see on N. kunapalari (4n) species (S8 Fig), for which we

could not reject either of the inheritance modes.

Further extended analysis of the population structure and potential gene flow with TreeMix

uncovered migration (gene flow) events from N. sudellae (4n) to N. kunapalari (4n) and from

N. sutor (2n) to N. aquilonius (4n) (Fig 3). In several analyses, we inferred migration from N.

sudellae (4n) to N. aquilonius (4n), reverse migration between N. sutor and N. aquilonius,
migration from N. albipes (2n) to N. kunapalari (4n) and even N. pelobatoides (2n) to N.

albipes (2n). The latter, if true, may be attributed to ancient migration events, since we do not

see any evidence for recent mixing between the diploids (Figs 1 and 2, S6 Fig). As a comple-

mentary analysis we estimated a network phylogeny which recovered two hybridization events

(S9 Fig): one between N. sudellae (4n) and N. aquilonius (4n), and a more ancient one between

N. kunapalari (4n) and the ancestral branch of N. aquilonius (4n), N. sudellae (4n) and N. pic-
tus (2n). This provided added support for gene flow between the tetraploid species. There are

several possible scenarios of unidirectional gene flow from diploids to tetraploids which the

TreeMix analysis suggested, for example, (1) through an unreduced gamete of a diploid cross-

ing with a tetraploid or (2) through a triploid individual formed in a cross between diploid and

a tetraploid, which could produce unreduced 3n gametes and backcross to a diploid. We

describe these scenarios and potential mechanisms of unreduced gamete formation in more

detail providing evidence based on literature [21, 25, 30, 31, 68–73], cytology and field observa-

tions in the S1 Text. Extensive gene flow between Neobatrachus species, especially between the

tetraploid species, makes it difficult to estimate the true ancestral diploid population(s) for the

tetraploids. Previously, it has been suggested that tetraploid Neobatrachus species might have

independent origins [19]. Our results are well aligned with this suggestion and place tetraploid

species in a polyphyletic arrangement on the species tree and on the TreeMix graphs, and sug-

gest at least two independent origins of polyploidy: genetically closest diploid lineages to N.

aquilonius and N. sudellae are N. fulvus and N. pictus respectively while the closest diploid line-

age to N. kunapalari is N. albipes.
An important question that remains is what allows admixture between Neobatrachus tetra-

ploids of potentially different origin and admixture of tetraploids with the local diploids, while

the diploids seem to be currently isolated from each other? Similar to Neobatrachus, the tetra-

ploid tree frogs Hyla versicolor of multiple origins show high levels of interbreeding in overlap-

ping geographical distribution, however the levels of divergence between the ancestral diploid

species in this case are shallower [28]. Another example of a similar pattern was shown in

plants, where polyploidy is more frequent: diploid Arabidopsis lyrata and A. arenosa do not

hybridize, while tetraploidy seems to overcome the endosperm-based hybridization barrier

enabling gene flow between the two species [74–76]. One hypothesis that can explain poly-

ploidy mediated gene flow in Neobatrachus is that potentially incompatible loci in the diploids

are masked in the tetraploids, however this requires a whole-genome sequencing analysis of

introgression.

Neobatrachus species are widely distributed in Australia with tetraploid species occurring

more in the central (drier) area compared to diploids, which is reflected in the principal com-

ponent analysis of the climatic data for species occurrences (S12 Fig). Areas occupied by differ-

ent Neobatrachus species differ only slightly in their environmental characteristics (S13 Fig).

Worth mentioning is that climatic variables do not entirely describe ecological niches, which

could differ in other characteristics such as timing of breeding and foraging, food source pref-

erence, or soil types etc. Nevertheless, ecological niche modelling based on climate data may

provide additional insights into population dynamic trends. Here, we applied the MaxEnt

modelling approach to the publicly available climate and occurrence data for all nine
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Neobatrachus species, comparing the present and past suitable geographical areas. Most of the

Neobatrachus species showed substantial changes of the suitable areas comparing current and

past presence probabilities (S14 Fig, S15 Fig). Interestingly, the estimated change in suitable

habitat areas and population genetics estimator of demographic trends (Tajima’s D), obtained

from independent datasets, were correlated (Fig 4C). Tetraploid species appear to be outliers

from the general trend, probably due to their mixed population structure: in this case, emer-

gence of rare alleles in the population due to migration events will affect Tajima’s D estimator.

Overall, it appears that the species with greater shrinkage of suitable area since the last glacial

maximum had less negative median Tajima’s D values, which suggests an ongoing shift from

population expansion to population contraction.

Conclusion and Outlook

Neobatrachus frogs represent a group of diploid and tetraploid species with a complex ances-

try. By analysing sequence data of 439 targeted orthologous nuclear loci across the entire Neo-
batrachus genus we show rapid diversification of the diploid Neobatrachus species and

multiple independent derivations of the tetraploid species. This work also revealed that the

diploid Neobatrachus species are currently isolated, when autotetraploids of a different origin

are able to hybridise with each other and with the local diploids in a unidirectional manner

with gene flow from the diploids to the tetraploids. Tetraploid Neobatrachus species are able to

occupy harsher environments and are distributed more widely across Australia. We suggest

that polyploidy-mediated gene flow and hybridisation promote the adaptive advantage of the

tetraploids in the face of climate change. These results, revealing gene flow between tetraploids

and asymmetric inter-ploidy gene flow, pose a number of important questions concerning the

evolution of sexual polyploid animals. Whole-genome sequencing data for Neobatrachus spe-

cies would not only help to refine the population structure and introgressive mixing in the

genus, but also provide information on potential adaptive values of the introgressed regions.

One could hypothesize that a wide and potentially rapid spread of the tetraploids into new ter-

ritories was facilitated by introgression from the locally adapted diploids [77], and that more

detailed sampling of the tetraploids from parts of their distribution ranges remote from sym-

patry with diploids may reveal evidence of early versus ongoing gene flow. Moreover, popula-

tion-level genomic resequencing of multiple diploid and tetraploid sister species could provide

insight into the unique biology of autotetraploid sexual animals and effects of the tetraploidiza-

tion on their evolution. The results on the changing suitable habitat areas for the Neobatrachus
species highlight the importance of continuous observation of their population dynamics.

Monitoring the current status of biodiversity through collection of species occurrence data

and population genetic data allows the prediction of population dynamics and hopefully timely

responses in conservation efforts in the face of rapidly changing environments [78, 79].

Emerging methods of public engagement to collect occurrence and other data (video and

audio; www.frogid.net.au, [80, 81]) have potential to provide essential information on the state

of frog species.

Methods

Anchored Hybrid Enrichment (AHE) phylogenomics

All the samples examined were obtained from the Australian Biological Tissue Collection at

the South Australian Museum. Details of all samples examined are presented in the S1 Table.

We collected AHE data at Florida State University’s Center for Anchored Phylogenomics

(www.anchoredphylogeny.com), following the methods described in Lemmon et al. [41] and

Prum et al. [82]. Briefly, after quantifying the extracted DNA using Qubit, we sonicated the

PLOS GENETICS Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008769 May 11, 2020 11 / 24

http://www.frogid.net.au/
http://www.anchoredphylogeny.com/
https://doi.org/10.1371/journal.pgen.1008769


DNA to a size range of 150-500bp using a Covaris Ultrasonicator. We then prepared indexed

libraries using a Beckman Coulter FXp liquid-handling robot. After library QC using Qubit,

we pooled the libraries in groups of 16 and enriched the library pools using an hybrid enrich-

ment kit developed for use in Anurans [42, 43]. Finally, we sequenced the enriched library

pools on two lanes of an Illumina 2500 sequencer with a PE150 protocol at the Translational

Laboratory at Florida State University.

Following sequencing, we quality filtered the reads using the Casava high-chastity filter,

then demultiplexed the reads using the 8bp indexes with no mismatches tolerated. To increase

read length and correct for sequencing errors, we merged read pairs that overlapped by at least

18bp using the method of Rokyta et al. [83]. This process also removed sequencing adapters.

We then performed a quasi ‘de novo’ assembly of the reads following Hamilton et al. [84], with

Pseudacris nigrita, and Gastrophryne carolinensis as references. In order to reduce the potential

effects of low level sample contamination, we retained only the assembly clusters containing

more than 61 reads. In order to produce phased haplotypes from the assembly clusters, we

applied the Bayesian approach developed by Pyron et al. [85], in which reads overlapping poly-

morphic sites are used to identify the likely phase of allelic variants within each locus. Because

this approach was developed to accommodate any ploidy level, we were able to isolate two or

four haplotypes for diploid and tetraploid individuals, respectively. We determined orthology

for each locus using a neighbor-joining approach based on pairwise sequence distances, as

described in Hamilton et al. [84]. We aligned homologous haplotypes using MAFFT v7.023b

[86], then auto-trimmed/masked the alignments following the approach of Hamilton et al.

[84], but with MINGOODSITES = 12, MINPROPSAME = 0.3, and MISSINGALLOWED = 48.

Final alignments were visually inspected in Geneious R9 (Biomatters Ltd., [87]) to ensure that

gappy regions were removed and misaligned sequences were masked.

Misidentifications in the dataset

Both phylogenetic and admixture assignments suggested that several individuals had been

misidentified in the field, which is expected for morphologically similar species and in particu-

lar for some of the diploid-tetraploid species pairs, e.g. N. fulvus and N. aquilonius [20]. Field

sampling can be accompanied by a certain level of honest mistakes in species identification,

especially for sympatric species. However, a high level of incompletely sorted polymorphisms

in recently split lineages or recent hybridization events could also result in uncertain position-

ing of an individual. We carefully curated the dataset and made a decision to rename some of

the misidentified samples or completely exclude them from the analyses based on the amount

of the missing data in the assembly, ploidy estimations from the sequencing data, and on the

clear placement in a different clade. Below we describe our workflow for manual curation of

the dataset to exclude or rename uncertain individuals without compromising too much on

the potentially real shared variation.

The multiple sequence alignment resulting from the AHE workflow contains different

amounts of informative sequence and gaps for each individual. First, we calculated the infor-

mative sequence fraction (no gaps) for each individual compared to the multiple sequence

alignment length and applied a threshold of at least 0.2 of informative fraction for each indi-

vidual to qualify for the subsequent analysis. Based on these criteria we excluded 6 samples (S1

Table).

Second, we estimated the ploidy of each sample using the nQuire software [88] on the next

generation sequencing data mapped to one of the outgroup species Heleioporus australiacus
(I5549) AHE assembly as a reference. As a preparation step for nQuire, we mapped reads to

the reference using the BWA-MEM algorithm from BWA [89] (version 0.7.17), used Samtools
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[90] (version 1.6) to sort and index the mapping and removed potential duplicates from the

PCR amplification step of library preparation with picard-tools (http://broadinstitute.github.

io/picard/). We used the denoised input of base frequencies generated with default parameters

for the Gaussian Mixture Model utilized in nQuire to estimate ploidy levels on the basis of fre-

quency distributions at biallelic sites. The resulted estimations can be found in S1 Table. We

excluded 5 samples placed in a different clade compared to the rest of the samples in the corre-

sponding lineage, where ploidy estimation confirmed their misidentification. Finally, we

renamed 2 samples to a different species name with which it clustered, in cases when initial

ploidy and estimated ploidy corresponded to each other (S1 Table).

We have also excluded from further analysis sample I5442, initially identified as N. kunapa-
lari, which was estimated to be a triploid and showed high levels of admixture between a dip-

loid N. wilsmorei and potentially N. kunapalari or N. sudellae. In fact, triploid individuals are

known in natural populations of Neobatrachus [22, 24, 25, 91, 92], (S1 Text), and could provide

an explanation for the gene flow between species of different ploidy through a “triploid

bridge”. A 3n individual formed in a cross between 2n and 4n individuals could produce a

haploid, diploid or triploid gametes. Diploid gametes can cross to a tetraploid and produce 4n

individuals that can backcross into the sympatric 4n population [71, 93, 94].

Phylogenetic analysis

To generate a molecular species tree, we started by reconstructing individual genealogies for

each of the 439 recovered loci. We analyzed two datasets, of which the first included all sam-

ples (except triploids discussed in the Results section), while the second was trimmed down to

just two individuals per species. Results from the full sampling can be found in the Supplemen-
tary Material (S2 Fig), and the finer sampling in the main text (Fig 1A). We used RaxML [46]

to simultaneously search for the best tree and apply 100 rapid bootstraps, implementing the

GTRGAMMA model of nucleotide evolution for each locus. In generating species trees, coa-

lescent methods have been shown to be more accurate than concatenation in cases of extensive

incomplete lineage sorting, so we used the shortcut coalescent method ASTRAL III. Shortcut

coalescent methods like ASTRAL take individual gene trees as input, and are much more com-

putationally efficient than full coalescent analyses. We used our RAxML-generated gene trees

as input for ASTRAL, allowing us to make use of all our molecular data.

To address gene-tree incongruence in a diploid-only phylogeny and investigate possible

conflicting signals in our data as a result of (1) rapid radiation or (2) introgression and/or

incomplete lineage sorting (ILS), we took a two-fold approach. We started by randomly select-

ing loci with complete species-level sampling for Neobatrachus, and visualized these gene trees

with a single representative per species, varying the sampled individuals among plots to visual-

ize the consistency of interspecific relationships (S6 Fig). Following this exercise we used mul-

tidimensional scaling (MDS) to approximate the relative distances between gene tree

topologies [95]. To prepare the data, we again trimmed down gene trees to one sample per spe-

cies of Neobatrachus, and discarded loci missing any taxa, leaving us with 361 loci. We started

by simply visualizing gene-tree incongruence overlaying the topologies of all 361 loci in Densi-

Tree (Fig 1, S5 Fig). We then calculated the pairwise distances between all gene trees using the

Robinson-Foulds metric, in the R package APE [96]. We projected the tree distances into two

and three dimensions (representing tree topology space) using MDS, as visualizing and inter-

preting more dimensions is difficult. To test if gene trees are uniformly distributed throughout

tree space, or clustered, we used the partitioning around the medoids algorithm as imple-

mented in the R package CLUSTER [97]. We chose the optimum number of clusters (k), using

the gap statistic, calculated for each k = 1–10. Clusters of gene trees represent similar
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topologies, and so we then summarized each cluster using ASTRAL, to identify consistent dif-

ferences in topology.

The inclusion of tetraploid taxa with admixed genetic material has the potential to nega-

tively influence bifurcating species tree inference. To address this, we removed tetraploid taxa

from all alignments to jointly estimate a species tree and divergence dates for diploid Neoba-
trachus species using StarBEAST2 [98]. We chose two individuals per diploid Neobatrachus
and Heleioporus species, as well as five microhylid outgroup taxa (Cophixalus cheesmanae, Lio-
phryne rhododactyla, Microhyla achatina, Kalophrynus interlineatus) for calibration purposes.

Full coalescent species tree inference can be computationally prohibitive with large data matri-

ces, and so we chose 25 loci selected for sampling completeness, locus length, and number of

variable sites informed by AMAS [99] (S7 Fig). We used a single strict molecular clock linked

across the 25 partitions, independent GTR site models, and ran four independent chains for

1x109 generations, sampled each 5x105 generations. Because no valuable fossil information for

Neobatrachus is available, we used two secondary calibrations from the most extensive anuran

time-tree to date [48]. The first on the root of the tree (split between Microhylidae and Myoba-

trachidae; normal distribution, mean = 128, sigma = 4), and the second between Neobatrachus
and Heleioporus (normal distribution, mean = 32.5, sigma = 4). Each run was inspected for sta-

tionarity with TRACER [100], and summarized to a maximum clade credibility tree with

mean heights to check for consistency in topology and divergence times.

While bootstrapping and posterior probabilities are commonly used to investigate topologi-

cal confidence, individual gene trees arguably provide a better estimate of concordance in

branching events found in the species tree. We estimated gene concordance factors (GCF) in

IQTREE [101], and plotted them along the species tree to visualize support for branching pat-

terns in the Neobatrachus species tree (Fig 1C and S5 Fig).

Population structure

Maximum likelihoods of individual ancestries were estimated with ADMIXTURE [47] for

66,789 biallelic sites combining all 439 loci and allowing for maximum 20 out of 87 Neobatra-
chus individuals (excluding the outgroup species) to have missing data at each site. In order to

include tetraploid samples in ancestry assignment we randomly chose two alleles for each site.

We also applied minor allele frequency threshold of two percent. Ancestral population assign-

ment showed three local minima of cross-validation errors at K equals 3, 7 and 9 (S4 Fig), with

K = 7 being the lowest, which we chose for the subsequent analysis as the optimal solution.

Inheritance mode

In order to check the inheritance mode of the three tetraploid Neobatrachus species we com-

pared allele frequencies distributions at biallelic sites within each individual for each species

with modeled expected distributions for auto and allo tetraploids. Autotetraploids were mod-

elled combining bam files within each diploid species from the mapping described above; allo-

tetraploids were modelled combining bam files between each diploid species (S8A Fig). Base

frequencies distributions of biallelic sites were produced using the denoised algorithm from

nQuire [88] for each individual separately. The base frequencies for each individual have a

continuous rather than discrete (AAAB 0.25, AABB 0.5, ABBB 0.75) distribution since they

are calculated from read counts at a biallelic site. As it was previously shown [49, 50] allotetra-

ploids with disomic inheritance mode are expected to have an excess of intermediate frequency

alleles, which is supported by our models as well (S8A Fig). Performing Wilcoxon tests for the

ratios between intermediate (40–60%) and rare (<30%) allele frequencies we rejected allotetra-

ploid origins for N. sudellae and N. aquilonius. N. kunapalari showed intermediate
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distributions, suggesting mixed chromosomal inheritance. A mixed chromosomal inheritance

pattern can be explained under several scenarios including being newly formed allopolyploid

hybrids of close relation, the presence of continued gene-flow with diploids or other autopoly-

ploid species, or the process of diploidization in an autopolyploid with tetrasomic inheritance

[102]. Other analyses in this study suggest extensive gene flow between N kunapalari and dip-

loids as well as tetraploids (Fig 2, Fig 3B and 3F). While we cannot rule out the possibility that

N. kunapalari was initially formed from the hybridization of two closely related lineages, we

believe extensive gene flow and the older lineage age of N. kunapalari is a sufficient and more

likely cause for its elevated intermediate allele frequencies when compared to the other

tetraploids.

Introgression inference

The graphs representing ancestral bifurcations and migration events were produced using

Treemix V.1.12 [51]. Input data contained 5092 biallelic sites called at 439 loci among 9 Neoba-
trachus species with at least 20% of the data to be present at each species at each site. Position

of the root was set to N. pelobatoides as the nuclear species tree suggested (Fig 1A, black). To

account for linkage disequilibrium we grouped SNPs in windows of size 10 using -k flag. We

also generated bootstrap replicates using -bootstrap flag and subsequently allowed up to 15

migration events with flag -m. We ran TreeMix software with 30 different random number

generated seeds. For graph and residuals visualisation we used R script plotting_funcs.R from

the Treemix package.

The network phylogeny of Neobatrachus was estimated using SNaQ [52] implemented in

PhyloNetworks (version 0.11.0) [53]. We used a single individual for each species, and esti-

mated gene tree phylogenies in RAxML [46], as described in the phylogenetic analysis section

above, using Heleioporus australiacus as the outgroup taxon, but pruned Heleioporus from all

trees for our PhyloNetworks analysis so as not to infer spurious ingroup-outgroup hybridiza-

tions as can occur in network analyses. We used a species tree estimated by ASTRAL as the

starting tree for our analysis, allowing for between 0 and 10 hybridizations. We conducted 10

replicates for each hybridization value. Final trees were re-rooted with Neobatrachus peloba-
toides as the root to match the network tree with the major tree. Pseudolikelihood values

reported from PhyloNetworks demonstrate a sharp increase in support when allowing 1 (-Plo-

glik = 55.06) hybridization event as opposed to 0 (-Ploglik = 188.17). We also found a consid-

erable change when allowing for 2 hybridization events (-Ploglik = 48.22). With more than

two hybridizations allowed, however, PhyloNetworks only recovered two hybridization events

or additional hybridizations resulted in suboptimal pseudolikelihoods (S9 Fig).

Summary statistics and demographic tendencies

We calculated summary statistics (Fig 4A–4C) with the R package “PopGenome” [103] for all

the loci with more than 100 aligned sites (filtering for only non-variable and biallelic sites and

filtering out sites with more than two alleles) separately for each species for within-species sta-

tistics (nucleotide diversity, Tajima’s D, S2 Table) and in a pairwise mode for between-species

statistics (Fst).

Species distribution modelling

Bioclimatic variables were obtained from worldclim project [55] with 2.5 minutes resolution

for reconstructed climate data at Last Glacial Maximum around 20Kya, averaged conditions

across 1960–1990 and the most recent available conditions averaged across 1970–2000. Soft-

ware DIVA-GIS 7.5 was used to trim the data to area longitude from 110 to 155 and latitude
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from -40 to -9. Bioclimatic variables were excluded if they were highly correlated (r>0.85,

Pearson correlation coefficient) in all 3 climatic data sets, leaving for further analysis 6 biocli-

matic variables in total: BIO9 = Mean Temperature of Driest Quarter, BIO10 = Mean Temper-

ature of Warmest Quarter, BIO12 = Annual Precipitation, BIO17 = Precipitation of Driest

Quarter, BIO18 = Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest

Quarter.

To model the species suitable area we used software MaxEnt (v. 3.4.1.), which predicts spe-

cies distribution from climate data using the species occurrences employing a machine learn-

ing technique called maximum entropy modeling [56]. Here we used Neobatrachus species

occurrence data from amphibiaweb.org [54], which includes 189 entries for N. albipes, 282 for

N. aquilonius, 87 for N. fulvus, 588 for N. kunapalari, 802 for N. pelobatoides, 699 for N. pictus,
707 for N. sudellae, 639 for N. sutor and 282 for N. wilsmorei (S11 Fig). We used 75% of occur-

rence points for each species for model training and 25% for model testing with 1,000,000

background points and 10 replicates. We have trained the model on bioclimatic variables

(reduced to 6 in total, described earlier) averaged across conditions 1960–1990; and then pro-

jected that model to the same set of environmental variables from the Last Glacial Maximum.

The average test AUC (area under the Receiving Operator Curve) for the replicate runs for all

the species was more than 0.9 (S3 Table), indicating a high performance of the models. In

order to estimate which bioclimatic variable is the most important in the models we performed

a jackknife test, where model performance was estimated without a particular variable and

only with this particular variable in turn (S13 Fig).

We used cloglog output format of MaxEnt, which gives an estimate between 0 and 1 of

probability of presence of the species in the area. In order to determine the relative change of

the suitable area we used the point-wise mean values from the 10 replicates for model predic-

tions on current and past climate (S14 Fig and S15 Fig). We extracted the suitable area for

both climate conditions with R library ‘raster’ [104] with 0.8 presence probability threshold

and estimated change in the suitable area relative to the current suitable area as (current-past)/

current.
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correspond to our final species assignments (S1 Table); colors of the bars are species-specific

and correspond to the branch colors from Fig 1A; filtered out samples are marked with black

bars.

(TIF)

S2 Fig. Nuclear species tree as inferred using ASTRAL, all nuclear loci, and complete taxon

sampling. Figure extends across four parts (A, B, C, D) and is color coded by species identity.

(TIF)

S3 Fig. Two dimensional representations of MDS gene tree space, colored by optimal clus-

tering scheme for two dimensions (k = 2) and three dimensions (k = 4), and their associ-

ated topologies inferred using ASTRAL. Each point represents a single gene tree, colored

clusters match colored trees displayed to the right. Nodes at values indicate bootstrap support.

(TIF)

S4 Fig. Cross-validation plot showing three local optimal solutions for ADMIXTURE clus-

tering at K equals 3, 7 and 9.

(TIF)

S5 Fig. (A) Gene trees, colored by clade, for 361 nuclear loci based on 2 individuals per species

show considerable incongruence and differ from the species trees (bold black topology). (B)

Gene trees for diploid individuals only also show considerable incongruence and differ from

the species trees (bold black topology). (C,D) Species tree colored by topological consistency as

measured by gene concordance factors—gCF%, the percentage of loci which decisively favor a

given bipartition. Warmer colors indicate high discordance, cooler colors indicate strong con-

cordance.

(TIF)

S6 Fig. Genealogies for six randomly sampled nuclear loci (y-axis) with different diploid

individuals chosen as representatives for each species (different sample sets, x-axis) are

consistent with each other. Genealogical conflict remains only among loci. This supports a

scenario of rapid speciation of the diploid species without secondary contact or persistent

incomplete lineage sorting.

(TIF)

S7 Fig. Sequenced loci statistics on alignment length and number of variable sites inferred

by AMAS (11).

(TIF)

S8 Fig. Distribution of allele frequencies of biallelic sites in Neobatrachus tetraploids sup-

ports tetrasomic inheritance mode in N. sudellae and N. aquilonius and mixed inheritance

mode in N. kunapalari. (A) Pairwise combination of individuals within the diploid species

model the expected allele frequencies in autotetraploids with tetrasomic inheritance (blue

line), when pairwise combination of individuals between the diploid Neobatrachus species

model the expected distribution for allotetraploids with disomic inheritance mode (purple

line). Modeled allotetraploids show excess of intermediate allele frequencies compared to auto-

tetraploids. Gray area shows 95% confidence interval. (B) Comparing the ratio between inter-

mediate (40–60%) and rare (<30%) allele frequencies we reject allotetraploid origin for N.

sudellae and N. aquilonius, when N. kunapalari shows intermediate distribution, suggesting

mixed inheritance. Comparisons performed with Wilcoxon tests adjusted for multiple testing.

(TIF)
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S9 Fig. SnaQ analysis. A. The optimum phylogenetic network includes two hybridization

events. B. Network score has the best support at minumum 2 hybridization events, additional

allowed hybridizations do not increase the network score.

(TIF)

S10 Fig. Heatmap and hierarchical clustering of the Neobatrachus lineages based on the

distance matrix from pairwise median Fst values. Tetraploid species (N. sudellae, N. aquilo-
nius and N. kunapalari; highlighted with black left bar) cluster together and are characterised

by the lowest Fst values between each other. This, together with low Fst values between tetra-

ploid and diploid lineages, can probably be explained by the gene flow within the tetraploids

and between the diploids and the tetraploids. Diploid lineages (highlighted with grey left bar)

appear to be more isolated from each other compared to tetraploids, which is in agreement

with ADMIXTURE assignment results and TreeMix estimations of possible migration events.

(TIF)

S11 Fig. Occurrence data locations registered at the AmphibiaWeb database for Neobatra-

chus species: A—tetraploids, B—diploids.

(TIF)

S12 Fig. PCA analysis of bioclimatic variables for Neobatrachus entries in the occurrence

AmphibiaWeb database. A) Barplot showing the percentage of variances explained by each

principal component. The first three principal components are labeled with the top three con-

tributions of variables. BIO10 = Mean Temperature of Warmest Quarter, BIO12 = Annual

Precipitation, BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation of Warmest

Quarter, BIO19 = Precipitation of Coldest Quarter. B-D) Pairwise combinations of the first

three principal components, where individuals with a similar profile of bioclimatic data are

grouped together. Points represent each individual and colored according to the species

assignment, ellipses represent 95% confidence area.

(TIF)

S13 Fig. The results of the jackknife test of variable importance for models on each species.

BIO19 (Precipitation of Coldest Quarter) was the most informative variable for the models of

N. pelobatoides and N. albipes distributions; BIO18 (Precipitation of Warmest Quarter) was

the most informative variable for the models of N. wilsmorei, N. sutor and N. kunapalari;
BIO17 (Precipitation of Driest Quarter) was the most informative variable for the model of N.

fulvus; BIO10 (Mean Temperature of Warmest Quarter) for N. pictus; and BIO9 (Mean Tem-

perature of Driest Quarter) for N. sudellae and N. aquilonius.
(TIF)

S14 Fig. The point-wise mean of the 10 models for each of the diploid species build on

environmental layers from the current climate data and applied to the environmental lay-

ers from the Last Glacial Maximum climate data.

(TIF)

S15 Fig. The point-wise mean of the 10 models for each of the tetraploid species build on

environmental layers from the current climate data and applied to the environmental lay-

ers from the Last Glacial Maximum climate data.

(TIF)

S16 Fig. Karyotypes of Neobatrachus. A) N. sutor [2n], B) N. pictus x N. sudellae triploid [3n]

hybrid from Moyston, east of the Grampians, Victoria, C) N. fulvus x N. sutor triploid [3n]

hybrid from Learmonth, Western Australia, D) N. sudellae [4n], E) tetraploid x tetraploid
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hybrid from north of Menzies, Western Australia, F) N. pictus x N. sudellae pentaploid [5n]

hybrid from Moyston, east of the Grampians, Victoria. Arrowheads indicate nucleolar orga-

niser regions (NORs).

(TIF)
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