29 research outputs found

    The effects of positive affect and episodic future thinking on temporal discounting, and healthy food demand and choice among overweight and obese individuals: Protocol for a pilot 2x2 factorial randomized controlled study

    Get PDF
    Background: Unhealthy behaviors (eg, poor food choices) contribute to obesity and numerous negative health outcomes, including multiple types of cancer and cardiovascular and metabolic diseases. To promote healthy food choice, diet interventions should build on the dual-system model to target the regulation and reward mechanisms that guide eating behavior. Episodic future thinking (EFT) has been shown to strengthen regulation mechanisms by reducing unhealthy food choice and temporal discounting (TD), a process of placing greater value on smaller immediate rewards over larger future rewards. However, these interventions do not target the reward mechanisms that could support healthy eating and strengthen the impact of EFT-anchored programs. Increasing positive affect (PosA) related to healthy food choices may target reward mechanisms by enhancing the rewarding effects of healthy eating. An intervention that increases self-regulation regarding unhealthy foods and the reward value of healthy foods will likely have a greater impact on eating behavior compared with interventions focused on either process alone. Objective: This study aimed to introduce a protocol that tests the independent and interactive effects of EFT and PosA on TD, food choice, and food demand in overweight and obese adults. Methods: This protocol describes a factorial, randomized, controlled pilot study that employs a 2 (affective imagery: positive, neutral) by 2 (EFT: yes, no) design in which participants are randomized to 1 of 4 guided imagery intervention arms. In total, 156 eligible participants will complete 2 lab visits separated by 5 days. At visit 1, participants complete surveys; listen to the audio guided imagery intervention; and complete TD, food demand, and food choice tasks. At visit 2, participants complete TD, food demand, and food choice tasks and surveys. Participants complete a daily food frequency questionnaire between visits 1 and 2. Analyses will compare primary outcome measures at baseline, post intervention, and at follow-up across treatment arms. Results: Funding notification was received on April 27, 2017, and the protocol was approved by the institutional review board on October 6, 2017. Feasibility testing of the protocol was conducted from February 21, 2018, to April 18, 2018, among the first 32 participants. As no major protocol changes were required at the end of the feasibility phase, these 32 participants were included in the target sample of 156 participants. Recruitment, therefore, continued immediately after the feasibility phase. When this manuscript was submitted, 84 participants had completed the protocol. Conclusions: Our research goal is to develop novel, theory-based interventions to promote and improve healthy decision-making and behaviors. The findings will advance decision-making research and have the potential to generate new neuroscience and psychological research to further understand these mechanisms and their interactions. Trial Registration: ISRCTN Registry ISRCTN11704675; http://www.isrctn.com/ISRCTN11704675 (Archived by WebCite at http://www.webcitation.org/760ouOoKG) International Registered Report Identifier (IRRID): DERR1-10.2196/1226

    Adenosine A2A receptors: localization and function

    Get PDF
    Adenosine is an endogenous purine nucleoside present in all mammalian tissues, that originates from the breakdown of ATP. By binding to its four receptor subtypes (A1, A2A, A2B, and A3), adenosine regulates several important physiological functions at both the central and peripheral levels. Therefore, ligands for the different adenosine receptors are attracting increasing attention as new potential drugs to be used in the treatment of several diseases. This chapter is aimed at providing an overview of adenosine metabolism, adenosine receptors localization and their signal transduction pathways. Particular attention will be paid to the biochemistry and pharmacology of A2A receptors, since antagonists of these receptors have emerged as promising new drugs for the treatment of Parkinson's disease. The interactions of A2A receptors with other nonadenosinergic receptors, and the effects of the pharmacological manipulation of A2A receptors on different body organs will be discussed, together with the usefulness of A2A receptor antagonists for the treatment of Parkinson's disease and the potential adverse effects of these drugs

    The magnetic Rayleigh–Taylor instability in solar prominences

    Get PDF

    Biomechanics of the Ankle

    No full text

    Rotational Motion of the Knee: A Comparison of Normal and Pronating Subjects

    No full text

    Biomechanics of the Foot in Walking: A Function Approach

    No full text
    corecore