16 research outputs found

    Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum

    No full text
    A classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-2-amino-5- phosphonovaleric acid (D-APV). A

    Neuroprotective effect of mifepristone involves neuron depolarization

    No full text
    International audienceIn several regions of the developing nervous system, neurons undergo programmed cell death. In the rat cerebellum, Purkinje cell apoptosis is exacerbated when cerebellar slices are cultured during the first postnatal week. To understand the mechanism of this developmental apoptosis, we took advantage of its inhibition by the steroid analog mifepristone. This effect did not involve the classical steroid nuclear receptors. Microarray analysis revealed that mifepristone down-regulated mRNA levels of the Na+/K+-ATPase alpha3 subunit more than three times. Consistent with the down-regulation of the Na+/K+-ATPase, mifepristone caused Purkinje cell membrane depolarization. Depolarizing agents like ouabain (1 microM), tetraethylammonium (2 mM), and veratridine (2 microM) protected Purkinje cells from apoptosis. These results suggest a role of excitatory inputs in Purkinje cell survival during early postnatal development. Indeed, coculturing cerebellar slices with glutamatergic inferior olivary neuron preparations allowed rescue of Purkinje cells. These findings reveal a new neuroprotective mechanism of mifepristone and support a pivotal role for excitatory inputs in the survival of Purkinje neurons. Mifepristone may be a useful lead compound in the development of novel therapeutic approaches for maintaining the resting potential of neurons at values favorable for their survival under neuropathological conditions

    Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta

    No full text
    Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.Peer reviewe
    corecore