463 research outputs found
Evaluating Variable Length Markov Chain Models for Analysis of User Web Navigation Sessions
Markov models have been widely used to represent and analyse user web
navigation data. In previous work we have proposed a method to dynamically
extend the order of a Markov chain model and a complimentary method for
assessing the predictive power of such a variable length Markov chain. Herein,
we review these two methods and propose a novel method for measuring the
ability of a variable length Markov model to summarise user web navigation
sessions up to a given length. While the summarisation ability of a model is
important to enable the identification of user navigation patterns, the ability
to make predictions is important in order to foresee the next link choice of a
user after following a given trail so as, for example, to personalise a web
site. We present an extensive experimental evaluation providing strong evidence
that prediction accuracy increases linearly with summarisation ability
Kemeny's constant and the random surfer
We revisit Kemeny's constant in the context of Web navigation, also known as "surfing." We generalize the constant, derive upper and lower bounds on it, and give it a novel interpretation in terms of the number of links a random surfer will follow to reach his final destination
Why is the snowflake schema a good data warehouse design?
Database design for data warehouses is based on the notion of the snowflake schema and its important special case, the star schema. The snowflake schema represents a dimensional model which is composed of a central fact table and a set of constituent dimension tables which can be further broken up into subdimension tables. We formalise the concept of a snowflake schema in terms of an acyclic database schema whose join tree satisfies certain structural properties. We then define a normal form for snowflake schemas which captures its intuitive meaning with respect to a set of functional and inclusion dependencies. We show that snowflake schemas in this normal form are independent as well as separable when the relation schemas are pairwise incomparable. This implies that relations in the data warehouse can be updated independently of each other as long as referential integrity is maintained. In addition, we show that a data warehouse in snowflake normal form can be queried by joining the relation over the fact table with the relations over its dimension and subdimension tables. We also examine an information-theoretic interpretation of the snowflake schema and show that the redundancy of the primary key of the fact table is zero
Trail records and navigational learning
An emerging wave of 'ambient' technologies has the potential to support learning in new and particular ways. In this paper we propose a 'trail model' of 'navigational learning' which links some particular learning needs to the potentialities of these technologies. In this context, we outline the design and use of an 'experience recorder', a technology to support learning in museums. In terms of policy for the e-society, these proposals are relevant to the need for personalised and individualised learning support
Guaranteeing no interaction between functional dependencies and tree-like inclusion dependencies
Functional dependencies (FDs) and inclusion dependencies (INDs) are the most fundamental integrity constraints that arise in practice in relational databases. A given set of FDs does not interact with a given set of INDs if logical implication of any FD can be determined solely by the given set of FDs, and logical implication of any IND can be determined solely by the given set of INDs. The set of tree-like INDs constitutes a useful subclass of INDs whose implication problem is polynomial time decidable. We exhibit a necessary and sufficient condition for a set of FDs and tree-like INDs not to interact; this condition can be tested in polynomial time
The Best Trail Algorithm for Assisted Navigation of Web Sites
We present an algorithm called the Best Trail Algorithm, which helps solve
the hypertext navigation problem by automating the construction of memex-like
trails through the corpus. The algorithm performs a probabilistic best-first
expansion of a set of navigation trees to find relevant and compact trails. We
describe the implementation of the algorithm, scoring methods for trails,
filtering algorithms and a new metric called \emph{potential gain} which
measures the potential of a page for future navigation opportunities.Comment: 11 pages, 11 figure
Justification for inclusion dependency normal form
Functional dependencies (FDs) and inclusion dependencies (INDs) are the most fundamental integrity constraints that arise in practice in relational databases. In this paper, we address the issue of normalization in the presence of FDs and INDs and, in particular, the semantic justification for Inclusion Dependency Normal Form (IDNF), a normal form which combines Boyce-Codd normal form with the restriction on the INDs that they be noncircular and key-based. We motivate and formalize three goals of database design in the presence of FDs and INDs: noninteraction between FDs and INDs, elimination of redundancy and update anomalies, and preservation of entity integrity. We show that, as for FDs, in the presence of INDs being free of redundancy is equivalent to being free of update anomalies. Then, for each of these properties, we derive equivalent syntactic conditions on the database design. Individually, each of these syntactic conditions is weaker than IDNF and the restriction that an FD not be embedded in the righthand side of an IND is common to three of the conditions. However, we also show that, for these three goals of database design to be satisfied simultaneously, IDNF is both a necessary and sufficient condition
Evaluating the development of wearable devices, personal data assistants and the use of other mobile devices in further and higher education institutions
This report presents technical evaluation and case studies of the use of wearable and mobile computing mobile devices in further and higher education. The first section provides technical evaluation of the current state of the art in wearable and mobile technologies and reviews several innovative wearable products that have been developed in recent years. The second section examines three scenarios for further and higher education where wearable and mobile devices are currently being used. The three scenarios include: (i) the delivery of lectures over mobile devices, (ii) the augmentation of the physical campus with a virtual and mobile component, and (iii) the use of PDAs and mobile devices in field studies. The first scenario explores the use of web lectures including an evaluation of IBM's Web Lecture Services and 3Com's learning assistant. The second scenario explores models for a campus without walls evaluating the Handsprings to Learning projects at East Carolina University and ActiveCampus at the University of California San Diego . The third scenario explores the use of wearable and mobile devices for field trips examining San Francisco Exploratorium's tool for capturing museum visits and the Cybertracker field computer. The third section of the report explores the uses and purposes for wearable and mobile devices in tertiary education, identifying key trends and issues to be considered when piloting the use of these devices in educational contexts
- âŠ