Markov models have been widely used to represent and analyse user web
navigation data. In previous work we have proposed a method to dynamically
extend the order of a Markov chain model and a complimentary method for
assessing the predictive power of such a variable length Markov chain. Herein,
we review these two methods and propose a novel method for measuring the
ability of a variable length Markov model to summarise user web navigation
sessions up to a given length. While the summarisation ability of a model is
important to enable the identification of user navigation patterns, the ability
to make predictions is important in order to foresee the next link choice of a
user after following a given trail so as, for example, to personalise a web
site. We present an extensive experimental evaluation providing strong evidence
that prediction accuracy increases linearly with summarisation ability