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Abstract

Functional dependencies (FDs) and inclusion dependencies (INDs) are the most fun-
damental integrity constraints that arise in practice in relational databases. A given set
of FDs does not interact with a given set of INDs if logical implication of any FD can
be determined solely by the given set of FDs, and logical implication of any IND can be
determined solely by the given set of INDs. The set of tree-like INDs constitutes a useful
subclass of INDs whose implication problem is polynomial time decidable. We exhibit a
necessary and sufficient condition for a set of FDs and tree-like INDs not to interact; this
condition can be tested in polynomial time.

Keywords: Relation; Database; Logical implication; Functional dependency; Inclusion
dependency

1 Introduction

The implication problem for FDs and INDs is the problem of deciding for a given set Σ of
FDs and INDs whether Σ logically implies σ, where σ is an FD or an IND. The implication
problem is central in data dependency theory and is also utilised in the process of database
design, since it can be used to test whether two sets of dependencies are equivalent or to
detect whether a dependency in a given set is redundant. The implication problem for FDs
and INDs is known to be undecidable in the general case [Mit83, CV85] and can be decided
only in exponential time when the INDs are restricted to be noncircular [CK86] or proper
circular [Imi91]. On the other hand, the implication problem for FDs on their own is known
to be decidable in linear time [BB79] and the implication problem for noncircular or proper
circular INDs, again on their own, is known to be NP-complete [MR92] (for INDs, which may
be circular, the implication problem is PSPACE-complete [CFP84]). Thus given a set Σ of
FDs and INDs and an FD or IND σ, it would be desirable if the set F of FDs and the set I of
INDs do not interact, in the sense that the implication problem of whether Σ logically implies
σ can be decided by F on its own, when σ is an FD, and by I on its own, when σ is an IND.
That is, if F and I do not interact then the algorithms in database design that use logical
implication can be implemented more efficiently than would otherwise be the case (see [LV00]).
The impact of such lack of interaction would be the greatest if the implication problem for
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the subclass of INDs under consideration is polynomial time decidable. It has been a long
standing open problem in relational database theory to characterise useful subclasses of FDs
and INDs that do not interact.

We partially solve this open problem by exhibiting a necessary and sufficient condition for
no interaction between a set of FDs and a set of INDs which is tree-like [MR88]. Moreover,
this condition can be tested in polynomial time. The implication problem for tree-like INDs,
which is a proper subclass of the subclass of noncircular INDs, is polynomial time decid-
able. Although the subclass of tree-like INDs is somewhat restricted it covers many practical
situations when inclusion dependencies are used to enforce referential integrity [Dat86].

The layout of the rest of this note is as follows. In Section 2 we briefly define the underlying
concepts from relational database theory. In Section 3 we introduce the subclass of tree-like
INDs and reduced set of FDs and INDs. In Section 4 we present our main result which states
that a set of FDs and tree-like INDs do not interact if and only if such a set is reduced.
Finally, in Section 5 we give our concluding remarks.

2 Functional and inclusion dependencies

Herein we present the preliminary concepts from relational database theory [MR92, LL99a]
which are needed to obtain our results. We use the notation |S| to denote the cardinality of
a set S. We often denote the singleton {A} simply by A, and the union of two sets S, T, i.e.
S ∪ T, simply by ST.

Definition 2.1 (Database schema and database) Let U be a finite set of attributes. A
relation schema R is a finite sequence of distinct attributes from U . A database schema is a
finite set R = {R1, . . . , Rn}, such that each Ri ∈ R is a relation schema and

⋃
i Ri = U .

We assume a countably infinite domain of values D; without loss of generality, we assume
that D is linearly ordered. An R-tuple (or simply a tuple whenever R is understood from
context) is a member of the Cartesian product D × . . .×D (|R| times).

A relation r over R is a finite (possibly empty) set of R-tuples. A database d over R is a
family of n relations {r1, . . . , rn} such that each ri ∈ d is over Ri ∈ R.

From now on we let R be a database schema and d be a database over R. Furthermore,
we let r ∈ d be a relation over the relation schema R ∈ R.

Definition 2.2 (Projection) The projection of an R-tuple t onto a set of attributes Y ⊆
R, denoted by t[Y] (also called the Y-value of t), is the restriction of t to Y, maintaining the
order of Y. The projection of a relation r onto Y, denoted as πY(r), is defined by πY(r) =
{t[Y] | t ∈ r}.

Definition 2.3 (Functional Dependency) A functional dependency (or simply an FD)
over a database schema R is a statement of the form R:X → Y (or simply X → Y whenever
R is understood from context), where R ∈ R and X, Y ⊆ R are sets of attributes. An FD of
the form R:X → Y is said to be trivial if Y ⊆ X.

An FD R:X → Y is satisfied in d, denoted by d |= R:X → Y, whenever ∀t1, t2 ∈ r, if t1[X]
= t2[X] then t1[Y] = t2[Y].
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Definition 2.4 (Inclusion Dependency) An inclusion dependency (or simply an IND)
over a database schema R is a statement of the form Ri[X] ⊆ Rj [Y], where Ri, Rj ∈ R
and X ⊆ Ri, Y ⊆ Rj are sequences of distinct attributes such that |X| = |Y|. An IND is said
to be trivial if it is of the form R[X] ⊆ R[X].

An IND Ri[X] ⊆ Rj [Y] over R is satisfied in d, denoted by d |= Ri[X] ⊆ Rj [Y], whenever
πX(ri) ⊆ πY(rj), where ri, rj ∈ d are the relations over Ri and Rj , respectively.

In the sequel we let F be a set of FDs over R and Fi = {Ri : X → Y ∈ F}, i ∈ {1, . . . , n},
be the set of FDs in F over Ri ∈ R. Furthermore, we let I be a set of INDs over R and let
Σ = F ∪ I.

Definition 2.5 (Logical implication) Σ is satisfied in d, denoted by d |= Σ, if ∀σ ∈ Σ, d |=
σ.

Σ logically implies an FD or an IND σ, written Σ |= σ, if whenever d is a database over
R then the following condition is true:

if d |= Σ holds then d |= σ also holds.

Σ logically implies a set Γ of FDs and INDs over R, written Σ |= Γ, if ∀σ ∈ Γ,Σ |= σ. We
let Σ+, called the closure of Σ, denote the set of all FDs and INDs that are logically implied
by Σ.

The closure of a set of attributes X ⊆ Ri with respect to Fi, denoted by Ci(X), is the set
of attributes {A | X → A ∈ Fi

+}.

The next well-known result follows from Theorem 9.2 in Chapter 9 of [MR92].

Lemma 2.1 Let Fi be a set of FDs over Ri and Ri:X → Y be an FD such that Y 6⊆ Ci(X).
Moreover, let ri ∈ d over Ri be a relation containing two tuples, t1 and t2 such that for all
A ∈ Ri, t1[A] = 0, for all A ∈ Ci(X), t2[A] = 0 and for all A ∈ Ri−Ci(X), t2[A] = 1. Then
d |= Fi but d 6|= Ri:X → Y. 2

The pullback inference rule for FDs and INDs [Mit83, CFP84], which is utilised below, is
stated in the ensuing proposition.

Proposition 2.2 If Σ |= {R[XY] ⊆ S[WZ], S:W → Z} and |X|=|W|, then Σ |= R:X → Y.
2

The chase procedure provides us with a very useful algorithm which forces a database to
satisfy a set of FDs and INDs.

Definition 2.6 (The chase procedure for INDs) The chase of d with respect to Σ, de-
noted by CHASE(d,Σ), is the result of applying the following chase rules, namely the FD and
the IND rules, to the current state of d as long as possible. (The current state of d prior to
the first application of either of the chase rules is its state upon input to the chase procedure.)

FD rule: If Rj :X → Y ∈ Fj and ∃t1, t2 ∈ rj such that t1[X] = t2[X] but t1[Y] 6= t2[Y], then
∀A ∈ Y, change all the occurrences in d of the larger of the values of t1[A] and t2[A] to
the smaller of the values of t1[A] and t2[A].
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IND rule: If Ri[X] ⊆ Rj [Y] ∈ I and ∃t ∈ ri such that t[X] 6∈ πY(rj), then add a tuple u over
Rj to rj , where u[Y] = t[X] and ∀A ∈ Rj−Y, u[A] is assigned a new value greater than
any other current value occurring in the tuples of the relations in the current state of d.

Often we refer to an application of the FD rule or IND rule during the computation of
the chase as a chase step.

We observe that there is no loss of generality to consider an FD rule for Rj : X → Y as
an FD rule for the FDs Rj : X → A, with A ∈ Y−X such that t1[A] 6= t2[A]. We will utilise
this observation in proofs which use the chase procedure. We also observe that, in general,
the chase procedure in the presence of INDs does not always terminate [JK84]. However, for
some special subclasses of INDs the chase always terminates; see Theorem 3.39 in [LL99a].

3 The Subclass of Tree-Like INDs and Reduced FDs and INDs

Herein we define the subclass of tree-like INDs and show that the implication problem for
this subclass can be decided in polynomial time. We also introduce the notion of a set of FDs
and INDs being reduced and show that this condition can be tested in polynomial time.

Definition 3.1 (Graph representation of INDs) The graph representation of a set of
INDs I over R is a directed graph GI = (N, E), which is constructed as follows. Each relation
schema R in R has a separate node in N labelled by R; we do not distinguish between nodes
and their labels. There is an arc (R, S) ∈ E if and only if there is a nontrivial IND R[X] ⊆
S[Y] ∈ I.

Definition 3.2 (Tree-like INDs) A set I of INDs over R is tree-like if

1) for all R, S ∈ R, there is at most one nontrivial IND in I of the form R[X] ⊆ S[Y], and

2) GI is a forest, i.e. its maximally connected subgraphs (or components) are rooted trees
(or simply trees).

The above definition essentially excludes any subclasses of INDs inducing a cyclic graph
GI , ignoring the direction of its arcs.

The following theorem is a consequence of results in Chapter 10 of [MR92]. It shows that
when I is a set of tree-like INDs, then the chase procedure terminates and satisfies Σ. It also
shows that in this case the chase can be decoupled into two distinct stages. At the first stage
the IND rule is applied to the current state of d exhaustively and at the second stage the FD
rule is applied exhaustively to the current state of d, after the first stage has been computed,
terminating with the final result.

Theorem 3.1 Let Σ = F ∪ I be a set of FDs and tree-like INDs over a database schema R.
Then the following three statements are true:

(i) CHASE(d,Σ) |= Σ.

(ii) CHASE(d,Σ) is identical to CHASE(CHASE(d, I), F) up to renaming of new values.
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(iii) CHASE(d,Σ) terminates after a finite number of applications of the IND and FD rules
to the current state of d. 2

The next result shows that the implication problem for tree-like INDs can be solved in
polynomial time.

Proposition 3.2 Given a set I of tree-like INDs over R and an IND R[X] ⊆ S[Y] over R, it
can be decided in polynomial time in the size of I whether I |= R[X] ⊆ S[Y].

Proof. Let d be a database, where apart from r over R all the relations in d are empty, and
let r over R contain a single tuple t such that for all distinct attributes A, B ∈ R, t[A] and
t[B] are pairwise distinct values. From the results in [CFP84] and Chapter 10 in [MR92] we
have that I |= R[X] ⊆ S[Y] if and only if CHASE(d, I) |= R[X] ⊆ S[Y]. Thus I |= R[X] ⊆ S[Y]
if and only if there is a tuple u ∈ s, where s is the relation in d over S, such that u[Y] = t[X].
It remains to show that the number of chase steps, say k, required to compute CHASE(d,
I) is polynomial in the size of I. However, this easily follows from Definition 3.2, since this
definition implies that k ≤ |I|. 2

Definition 3.3 (Reduced set of FDs and INDs) The projection of a set of FDs Fi over
Ri onto a set of attributes Y ⊆ Ri, denoted by Fi[Y], is given by Fi[Y] = {Ri:W → Z | Ri:W
→ Z ∈ F+

i and WZ ⊆ Y}.
A set of attributes Y ⊆ Ri is said to be reduced with respect to Ri and a set of FDs Fi over

Ri (or simply reduced with respect to Fi if Ri is understood from context) if Fi[Y] contains
only trivial FDs. A set of FDs and INDs Σ = F ∪ I is said to be reduced if ∀Ri[X] ⊆ Rj [Y]
∈ I, Y is reduced with respect to Fj .

An example of the usefulness of a reduced set I of INDs is the case when I is key-based,
i.e. Y is a key for Rj with respect to Fj [LL99b].

The following result is also utilised in [LL99b]; for completeness we give its proof.

Proposition 3.3 It can be decided in polynomial time in the size of Σ whether Σ is reduced
or not.

Proof. The condition that Y is reduced with respect to Fj is true if and only if ∀A ∈ Y,
(Y−A) → A 6∈ F+

j . The result now follows, since (Y−A) → A 6∈ F+
j can be checked in

polynomial time in the size of Fj [BB79]. 2

4 Interaction between FDs and INDs

Herein we introduce the notion of no interaction between a set of FDs and a set of INDs and
prove our main result.

Definition 4.1 (Interaction between FDs and INDs) A set of FDs F over R is said not
to interact with of set of INDs I over R, if

1) for all FDs α over R, for all subsets G ⊆ F, G ∪ I |= α if and only if G |= α, and
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2) for all INDs β over R, for all subsets J ⊆ I, F ∪ J |= β if and only if J |= β.

Theorem 4.1 Let Σ = F ∪ I be a set of FDs and tree-like INDs over R. Then F and I do
not interact if and only if Σ is reduced.

Proof. If. There are two cases to consider.
Case 1. Let G ⊆ F be a set of FDs over R and let Ri:X → Y be an FD over Ri. We need

to show that if G ∪ I |= Ri:X → Y, then G |= Ri:X → Y. Equivalently, we need to show that
if G 6|= Ri:X → Y, then G ∪ I 6|= Ri:X → Y. That is, we need to exhibit a database, say d,
such that d |= G ∪ I but d 6|= Ri:X → Y.

Let d0 be a database, where apart from ri over Ri all the relations in d0 are empty, and
let ri contain two tuples, t1 and t2, as in Lemma 2.1. Thus d0 |= G but d0 6|= Ri:X → Y.
We inductively construct a database d′ by a depth-first traversal of the subtree, say T, of GI ,
whose root is Ri. If T is empty then d′ = d0. Otherwise, consider the next arc (R, Rj) in T
and its corresponding IND R[W] ⊆ Rj [Z] ∈ I. Without loss of generality we let R = Ri, since
our construction is identical for all arcs in T. We add two tuples u1 and u2 to the relation
rj ∈ d over Rj such that for all A ∈ Rj , u1[A] = 0, u2[Z] = t2[W] and u2[Rj−Z] is constructed
as follows. Let V be the set of all attributes A ∈ Z such that u2[A] = 0. Moreover, for all A ∈
Rj−Z, if A ∈ Cj(V) then we let u2[A] = 0, otherwise we let u2[A] = 1. Let this intermediate
database be di. It follows that di |= Ri[W] ⊆ Rj [Z] and by Lemma 2.1 di |= Fj , since due to
Σ being reduced Cj(V) ∩ Z−V = ∅. The result now follows, since by the construction of d′,
d′ |= G ∪ I but d′ 6|= Ri:X → Y.

Case 2. Let J ⊆ I be a set of INDs over R and R[X] ⊆ S[Y] be an IND over R. We need
to show that if F ∪ J |= R[X] ⊆ S[Y], then J |= R[X] ⊆ S[Y]. Equivalently, we need to show
that if J 6|= R[X] ⊆ S[Y], then F ∪ J 6|= R[X] ⊆ S[Y]. That is, we need to exhibit a database,
say d, such that d |= F ∪ J but d 6|= R[X] ⊆ S[Y].

Let d0 be a database, where apart from r over R all the relations in d0 are empty, and
let r contain a single tuple t such that for all distinct attributes A, B ∈ R, t[A] and t[B]
are pairwise distinct values. Let d1 = CHASE(d, J). Then by the remark in the proof of
Proposition 3.2 and the assumption that J 6|= R[X] ⊆ S[Y] we have that d1 |= J but d1 6|=
R[X] ⊆ S[Y]. Moreover, due to the fact that I is tree-like all the relations in d1 contain at
most one tuple. Therefore, by part (ii) of Theorem 3.1 d1 = CHASE(d1, F ∪ J). The result
follows, since d1 |= F ∪ J but d1 6|= R[X] ⊆ S[Y].

Only if. Assume that Σ is not reduced and thus for some IND Ri[Zi] ⊆ Rj [Zj ] ∈ I, Zj is
not reduced with respect to Rj and Fj . It now follows that Fj [Zj ] contains a nontrivial FD,
say Rj : Xj → Yj , with XjYj ⊆ Rj . Furthermore, we have that I |= Ri[XiYi] ⊆ Rj [XjYj ]
for some subset XiYi ⊆ Zi, with |Xi|=|Xj |, since XjYj ⊆ Zj . Therefore, by Proposition 2.2,
Σ |= Ri : Xi → Yi, where Ri : Xi → Yi is a nontrivial FD. The result follows, since Fj∪ I |=
Ri : Xi → Yi but Fj 6|= Ri : Xi → Yi. 2

5 Concluding Remarks

We have shown that a set Σ of FDs and tree-like INDs do not to interact if and only if Σ
is reduced. This partially solves an open problem in database relational theory, namely to
characterise no interaction between FDs and INDs for useful subclasses of such data depen-
dencies whose implication problem is polynomial time testable. It is still an open problem to
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find a simple chararcterisation of the largest subclass of FDs and INDs that do not interact.
More insight into the problem can be found in [LL99b], which deals with the larger subclasses
of noncircular and proper circular INDs; therein it was shown that being reduced is not a
sufficient condition for a set Σ of FDs and noncircular INDs not to interact.

Acknowledgement. The authors would like to thank the referee for his/her constructive
comments.
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