52 research outputs found

    Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients

    Get PDF
    Background: The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods: Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results: We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion: Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated

    Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    Get PDF
    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment

    Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus

    Get PDF
    BACKGROUND:Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS:SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE:These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE

    Mitochondrial Oxidative Stress Alters a Pathway in Caenorhabditis elegans Strongly Resembling That of Bile Acid Biosynthesis and Secretion in Vertebrates

    Get PDF
    Mammalian bile acids (BAs) are oxidized metabolites of cholesterol whose amphiphilic properties serve in lipid and cholesterol uptake. BAs also act as hormone-like substances that regulate metabolism. The Caenorhabditis elegans clk-1 mutants sustain elevated mitochondrial oxidative stress and display a slow defecation phenotype that is sensitive to the level of dietary cholesterol. We found that: 1) The defecation phenotype of clk-1 mutants is suppressed by mutations in tat-2 identified in a previous unbiased screen for suppressors of clk-1. TAT-2 is homologous to ATP8B1, a flippase required for normal BA secretion in mammals. 2) The phenotype is suppressed by cholestyramine, a resin that binds BAs. 3) The phenotype is suppressed by the knock-down of C. elegans homologues of BA–biosynthetic enzymes. 4) The phenotype is enhanced by treatment with BAs. 5) Lipid extracts from C. elegans contain an activity that mimics the effect of BAs on clk-1, and the activity is more abundant in clk-1 extracts. 6) clk-1 and clk-1;tat-2 double mutants show altered cholesterol content. 7) The clk-1 phenotype is enhanced by high dietary cholesterol and this requires TAT-2. 8) Suppression of clk-1 by tat-2 is rescued by BAs, and this requires dietary cholesterol. 9) The clk-1 phenotype, including the level of activity in lipid extracts, is suppressed by antioxidants and enhanced by depletion of mitochondrial superoxide dismutases. These observations suggest that C. elegans synthesizes and secretes molecules with properties and functions resembling those of BAs. These molecules act in cholesterol uptake, and their level of synthesis is up-regulated by mitochondrial oxidative stress. Future investigations should reveal whether these molecules are in fact BAs, which would suggest the unexplored possibility that the elevated oxidative stress that characterizes the metabolic syndrome might participate in disease processes by affecting the regulation of metabolism by BAs

    A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity

    Get PDF
    The coordinated regulation of mitochondrial and nuclear activities is essential for cellular respiration and its disruption leads to mitochondrial dysfunction, a hallmark of ageing. Mitochondria communicate with nuclei through retrograde signalling pathways that modulate nuclear gene expression to maintain mitochondrial homeostasis. The monooxygenase CLK-1 (human homologue COQ7) was previously reported to be mitochondrial, with a role in respiration and longevity. We have uncovered a distinct nuclear form of CLK-1 that independently regulates lifespan. Nuclear CLK-1 mediates a retrograde signalling pathway that is conserved from Caenorhabditis elegans to humans and is responsive to mitochondrial reactive oxygen species, thus acting as a barometer of oxidative metabolism. We show that, through modulation of gene expression, the pathway regulates both mitochondrial reactive oxygen species metabolism and the mitochondrial unfolded protein response. Our results demonstrate that a respiratory enzyme acts in the nucleus to control mitochondrial stress responses and longevity

    Repetitive Immunization Enhances the Susceptibility of Mice to Peripherally Administered Prions

    Get PDF
    The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease

    Dendritic Cell-Mediated-Immunization with Xenogenic PrP and Adenoviral Vectors Breaks Tolerance and Prolongs Mice Survival against Experimental Scrapie

    Get PDF
    In prion diseases, PrPc, a widely expressed protein, is transformed into a pathogenic form called PrPSc, which is in itself infectious. Antibodies directed against PrPc have been shown to inhibit PrPc to PrPSc conversion in vitro and protect in vivo from disease. Other effectors with potential to eliminate PrPSc-producing cells are cytotoxic T cells directed against PrP-derived peptides but their ability to protect or to induce deleterious autoimmune reactions is not known. The natural tolerance to PrPc makes difficult to raise efficient adaptive responses. To break tolerance, adenovirus (Ad) encoding human PrP (hPrP) or control Ad were administered to wild-type mice by direct injection or by transfer of Ad-transduced dendritic cells (DCs). Control Ad-transduced DCs from Tg650 mice overexpressing hPrP were also used for immunization. DC-mediated but not direct administration of AdhPrP elicited antibodies that bound to murine native PrPc. Frequencies of PrP-specific IFNΞ³-secreting T cells were low and in vivo lytic activity only targeted cells strongly expressing hPrP. Immunohistochemical analysis revealed that CD3+ T cell infiltration was similar in the brain of vaccinated and unvaccinated 139A-infected mice suggesting the absence of autoimmune reactions. Early splenic PrPSc replication was strongly inhibited ten weeks post infection and mean survival time prolonged from 209 days in untreated 139A-infected mice to 246 days in mice vaccinated with DCs expressing the hPrP. The efficacy appeared to be associated with antibody but not with cytotoxic cell-mediated PrP-specific responses

    Longevity in mice: is stress resistance a common factor?

    Get PDF
    A positive relationship between stress resistance and longevity has been reported in a multitude of studies in organisms ranging from yeast to mice. Several mouse lines have been discovered or developed that exhibit extended longevities when compared with normal, wild-type mice of the same genetic background. These long-living lines include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, Ξ±-MUPA knockout, p66shc knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. These mice are described in terms of the reported extended lifespans and studies involving resistance to stress. In addition, caloric restriction (CR) and stress resistance are briefly addressed for comparison with genetically altered mice. Although many of the long-living mice have GH/IGF-1/insulin signaling-related alterations and enhanced stress resistance, there are some that exhibit life extension without an obvious link to this hormone pathway. Resistance to oxidative stress is by far the most common system studied in long-living mice, but there is evidence of enhancement of resistance in other systems as well. The differences in stress resistance between long-living mutant and normal mice result from complex interrelationships among pathways that appear to coordinate signals of growth and metabolism, and subsequently result in differences in lifespan

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles
    • …
    corecore