184 research outputs found

    On the destruction of the hidden order in URu2_2Si2_2 by a strong magnetic field

    Full text link
    We present a study of transport properties of the heavy fermion URu2_2Si2_2 in pulsed magnetic field. The large Nernst response of the hidden order state is found to be suppressed when the magnetic field exceeds 35 T. The combination of resistivity, Hall and Nernst data outlines the reconstruction of the Fermi surface in the temperature-field phase diagram. The zero-field ground state is a compensated heavy-electron semi-metal, which is destroyed by magnetic field through a cascade of field-induced transitions. Above 40 T, URu2_2Si2_2 appears to be a polarized heavy fermions metal with a large density of carriers whose effective mass rapidly decreases with increasing magnetic polarization.Comment: published versio

    Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K

    Full text link
    We studied the effects of cryogenic cooling of a 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile (OH1) crystal on the generation of broadband THz pulses via collinear optical rectification of 1350 nm femtosecond laser pulses. Cooling of the OH1 crystal from room temperature to 10 K leads to a ~10% increase of the pump-to-THz energy conversion efficiency and a shift of the THz pulse spectra to a higher frequency range. Both effects are due the temperature variation of THz absorption and the refractive index of the OH1 crystal. This conclusion has been verified by temperature dependent measurements of the linear absorption in the THz frequency region

    Impact of the capping layers on lateral confinement in InAs/InP quantum dots for 1.55 um laser applications srudied by magneto-photoluminescence.

    Get PDF
    We have used magnetophotoluminescence to study the impact of different capping layer material combinations (InP, GaInAsP quaternary alloy, or both InP and quaternary alloy) on lateral confinement in InAs/InP quantum dots (QDs) grown on (311)B orientated substrates. Exciton effective masses, Bohr radii, and binding energies are measured for these samples. Conclusions regarding the strength of the lateral confinement in the different samples are supported by photoluminescence at high excitation power. Contrary to theoretical predictions, InAs QDs in quaternary alloy are found to have better confinement properties than InAs/InP QDs. This is attributed to a lack of lateral intermixing with the quaternary alloy, which is present when InP is used to (partially) cap the dots. The implications of the results for reducing the temperature sensitivity of QD lasers are discussed. ©2005 American Institute of Physic

    Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8

    Full text link
    Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B (Rapid Communication

    Shubnikov-de Haas oscillations in YBa_2Cu_4O_8

    Full text link
    We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa2_2Cu4_4O8_8 (Y124). For field aligned along the c-axis, the frequency of the oscillations is 660±30660\pm 30 T, which corresponds to 2.4\sim 2.4 % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be 2.7±0.32.7\pm0.3 times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa2_2Cu3_3O6.5_{6.5} (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.Comment: v2: Version of paper accepted for publication in Physical Review Letters. Only minor changes to the text and reference

    Optical Self Energy in Graphene due to Correlations

    Full text link
    In highly correlated systems one can define an optical self energy in analogy to its quasiparticle (QP) self energy counterpart. This quantity provides useful information on the nature of the excitations involved in inelastic scattering processes. Here we calculate the self energy of the intraband optical transitions in graphene originating in the electron-electron interaction (EEI) as well as electron-phonon interaction (EPI). Although optics involves an average over all momenta (kk) of the charge carriers, the structure in the optical self energy is nevertheless found to mirror mainly that of the corresponding quasiparticles for kk equal to or near the Fermi momentum kFk_F. Consequently plasmaronic structures which are associated with momenta near the Dirac point at k=0k=0 are not important in the intraband optical response. While the structure of the electron-phonon interaction (EPI) reflects the sharp peaks of the phonon density of states, the excitation spectrum associated with the electron-electron interaction is in comparison structureless and flat and extends over an energy range which scales linearly with the value of the chemical potential. Modulations seen on the edge of the interband optical conductivity as it rises towards its universal background value are traced to structure in the quasiparticle self energies around kFk_F of the lower Dirac cone associated with the occupied states.Comment: 30 pages, 10 figure

    Pressure-induced structural transitions triggering dimensional crossover in lithium purple bronze Li0.9M6O17

    Full text link
    At ambient pressure, lithium molybdenum purple bronze (Li0.9Mo6O17) is a quasi-one dimensional solid in which the anisotropic crystal structure and the linear dispersion of the underlying bands produced by electronic correlations possibly bring about a rare experimental realization of Tomomaga-Luttinger liquid physics. It is also the sole member of the broader purple molybdenum bronzes family where a Peierls instability has not been identified at low temperatures. The present study reports a pressure-induced series of phase transitions between 0 and 12 GPa. These transitions are strongly reflected in infrared spectroscopy, Raman spectroscopy, and x-ray diffraction. The most dramatic effect seen in optical conductivity is the metallization of the c-axis, concomitant to the decrease of conductivity along the b-axis. This indicates that high pressure drives the material away from its quasi-one dimensional behavior at ambient pressure. While the first pressure-induced structure of the series is resolved, the identification of the underlying mechanisms driving the dimensional change in the physics remains a challenge.Comment: 10 pages, 12 figure

    Réalisation d’un laser à faible courant de seuil, avec des boites quantiques InAs/InP organisées et couplées latéralement

    Get PDF
    Nous présentons ici la réalisation d’un laser à faible courant de seuil avec des boites quantiques (QDs) organisées et couplées InAs/InP sur subsstrat (311)B pour une émission à 1.55 m. En effet, pour des hautes densités de QDs, une organisation périodique apparaît dans le plan. Cette organisation renforce le couplage latéral inter-boites. Des expériences de magnéto-photoluminescence permettent de mettre en évidence ces effets de couplage. Ce couplage améliore l’injection des porteurs. Une émission laser avec des faibles courants de seuil est obtenue avec de telles boites

    Exposure of young children to household water lead in the Montreal area (Canada): the potential influence of winter-to-summer changes in water lead levels on children's blood lead concentration

    Get PDF
    Drinking water represents a potential source of lead exposure. The purpose of the present study was to estimate the magnitude of winter-to-summer changes in household water lead levels (WLLs), and to predict the impact of these variations on BLLs in young children. A study was conducted from September, 2009 to March, 2010 in 305 homes, with a follow-up survey carried out from June to September 2011 in a subsample of 100 homes randomly selected. The first 1-L sample was drawn after 5 min of flushing, followed by a further 4 consecutive 1-L samples after 30 min of stagnation. Non-linear regression and general linear mixed models were used for modelling seasonal effects on WLL. The batchrun mode of Integrated Exposure Uptake Biokinetic (IEUBK) model was used to predict the impact of changes in WLL on children's blood lead levels (BLLs). The magnitude of winter-to-summer changes in average concentrations of lead corresponded to 6.55 mug/L in homes served by lead service lines (LSL+ homes) and merely 0.30 mug/L in homes without lead service lines. For stagnant samples, the value reached 10.55 mug/L in 'LSL+ homes' and remained very low (0.36 mug/L) in 'LSL- homes'. The change in the probability of BLLs >/=5 mug/dL due to winter-to-summer changes in WLL was increased from /=5 mug/dL in young children during warm months was reduced by at least 40% by flushing tap-water
    corecore