34 research outputs found

    Gibrat's law and the British industrial revolution

    Get PDF
    This paper examines Gibrat’s law in England and Wales between 1801 and 1911 using a unique data set covering the entire settlement size distribution. We find that Gibrat’s law broadly holds even in the face of population doubling every fifty years, an industrial and transport revolution, and the absence of zoning laws to constrain growth. The result is strongest for the later period, and in counties most affected by the industrial revolution. The exception were villages in areas bypassed by the industrial revolution. We argue that agglomeration externalities balanced urban disamenities such as commuting costs and poor living conditions to ensure steady growth of many places, rather than exceptional growth of few

    Gibrat’s law and the British industrial revolution

    Get PDF
    Gibrat's Law states that the growth of towns and cities is independent of their initial size. We show that the Industrial Revolution was revolutionary enough to violate this law for 1761-1801, 1801-1891, and all decades within. Small places grew more slowly throughout this period. Larger towns, in contrast, typically grew faster, but only if they were in core Industrial Revolution Counties. In line with economic theory, towns grew disproportionately when agglomeration economies exceeded urban disamenities, allowing wage rises that induced workers to migrate to the town. This only occurred in places characterised by new, mechanised industries and mining

    Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo

    Get PDF
    Visualizing cell behavior and effector function on a single cell level has been crucial for understanding key aspects of mammalian biology. Due to their small size, large number and rapid recruitment into thrombi, there is a lack of data on fate and behavior of individual platelets in thrombosis and hemostasis. Here we report the use of platelet lineage restricted multi-color reporter mouse strains to delineate platelet function on a single cell level. We show that genetic labeling allows for single platelet and megakaryocyte tracking and morphological analysis in vivo and in vitro, while not affecting lineage functions. Using Credriven Confetti expression, we provide insights into temporal gene expression patterns as well as spatial clustering of megakaryocytes in the bone marrow. In the vasculature, shape analysis of activated platelets recruited to thrombi identifies ubiquitous filopodia formation with no evidence of lamellipodia formation. Single cell tracking in complex thrombi reveals prominent myosin-dependent motility of platelets and highlights thrombus formation as a highly dynamic process amenable to modification and intervention of the acto-myosin cytoskeleton. Platelet function assays combining flow cytrometry, as well as in vivo, ex vivo and in vitro imaging show unaltered platelet functions of multicolor reporter mice compared to WT controls. In conclusion, platelet lineage multicolor reporter mice prove useful in furthering our understanding of platelet and megakaryocyte biology on a single cell level

    Immunothrombotic Dysregulation in COVID-19 Pneumonia is Associated with Respiratory Failure and Coagulopathy

    Get PDF
    Background: SARS-CoV-2 infection causes severe pneumonia (COVID-19), but the mechanisms of subsequent respiratory failure and complicating renal and myocardial involvement are poorly understood. In addition, a systemic prothrombotic phenotype has been reported in COVID-19 patients. Methods: A total of 62 subjects were included in our study (n=38 patients with RT-PCR confirmed COVID-19 and n=24 non-COVID-19 controls). We performed histopathological assessment of autopsy cases, surface-marker based phenotyping of neutrophils and platelets, and functional assays for platelet, neutrophil functions as well as coagulation tests. Results: We provide evidence that organ involvement and prothrombotic features in COVID-19 are linked by immunothrombosis. We show that in COVID-19 inflammatory microvascular thrombi are present in the lung, kidney, and heart, containing neutrophil extracellular traps associated with platelets and fibrin. COVID-19 patients also present with neutrophil-platelet aggregates and a distinct neutrophil and platelet activation pattern in blood, which changes with disease severity. Whereas cases of intermediate severity show an exhausted platelet and hyporeactive neutrophil phenotype, severely affected COVID-19 patients are characterized by excessive platelet and neutrophil activation compared to healthy controls and non-COVID-19 pneumonia. Dysregulated immunothrombosis in SARS-CoV-2 pneumonia is linked to both ARDS and systemic hypercoagulability. Conclusions: Taken together, our data point to immunothrombotic dysregulation as a key marker of disease severity in COVID-19. Further work is necessary to determine the role of immunothrombosis in COVID-19

    Thrombocytopenia and splenic platelet-directed immune responses after IV ChAdOx1 nCov-19 administration

    Get PDF
    Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are based on a range of novel platforms, with adenovirus-based approaches (like ChAdOx1 nCov-19) being one of them. Recently, a novel complication of SARS-CoV-2–targeted adenovirus vaccines has emerged: immune thrombocytopenia, either isolated, or accompanied by thrombosis (then termed VITT). This complication is characterized by low platelet counts, and in the case of VITT, also by platelet-activating platelet factor 4 antibodies reminiscent of heparin-induced thrombocytopenia, leading to a prothrombotic state with clot formation at unusual anatomic sites. Here, we detected antiplatelet antibodies targeting platelet glycoprotein receptors in 30% of patients with proven VITT (n = 27) and 42% of patients with isolated thrombocytopenia after ChAdOx1 nCov-19 vaccination (n = 26), indicating broad antiplatelet autoimmunity in these clinical entities. We use in vitro and in vivo models to characterize possible mechanisms of these platelet-targeted autoimmune responses leading to thrombocytopenia. We show that IV but not intramuscular injection of ChAdOx1 nCov-19 triggers platelet-adenovirus aggregate formation and platelet activation in mice. After IV injection, these aggregates are phagocytosed by macrophages in the spleen, and platelet remnants are found in the marginal zone and follicles. This is followed by a pronounced B-cell response with the emergence of circulating antibodies binding to platelets. Our work contributes to the understanding of platelet-associated complications after ChAdOx1 nCov-19 administration and highlights accidental IV injection as a potential mechanism of platelet-targeted autoimmunity. Hence, preventing IV injection when administering adenovirus-based vaccines could be a potential measure against platelet-associated pathologies after vaccination

    Vascular surveillance by haptotactic blood platelets in inflammation and infection

    Get PDF
    Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets

    Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection

    Get PDF
    The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies

    The future of medical diagnostics: Review paper

    Get PDF
    While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd

    Nucleocapsid-specific T cell responses associate with control of SARS-CoV-2 in the upper airways before seroconversion

    Get PDF
    Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19
    corecore