16,557 research outputs found

    Asymptotic entanglement capacity of the Ising and anisotropic Heisenberg interactions

    Get PDF
    We compute the asymptotic entanglement capacity of the Ising interaction ZZ, the anisotropic Heisenberg interaction XX + YY, and more generally, any two-qubit Hamiltonian with canonical form K = a XX + b YY. We also describe an entanglement assisted classical communication protocol using the Hamiltonian K with rate equal to the asymptotic entanglement capacity.Comment: 5 pages, 1 figure; minor corrections, conjecture adde

    Galileo internal electrostatic discharge program

    Get PDF
    The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines

    New geometries for high spatial resolution hall probes

    Full text link
    The Hall response function of symmetric and asymmetric planar Hall effect devices is investigated by scanning a magnetized tip above a sensor surface while simultaneously recording the topography and the Hall voltage. Hall sensor geometries are tailored using a Focused Ion Beam, in standard symmetric and new asymmetric geometries. With this technique we are able to reduce a single voltage probe to a narrow constriction 20 times smaller than the other device dimensions. We show that the response function is peaked above the constriction, in agreement with numerical simulations. The results suggest a new way to pattern Hall sensors for enhanced spatial resolution.Comment: 12 pages, 5 figures, submitted to Journal of Applied Physic

    Central Charge and the Andrews-Bailey Construction

    Get PDF
    From the equivalence of the bosonic and fermionic representations of finitized characters in conformal field theory, one can extract mathematical objects known as Bailey pairs. Recently Berkovich, McCoy and Schilling have constructed a `generalized' character formula depending on two parameters \ra and 2˚\r2, using the Bailey pairs of the unitary model M(p1,p)M(p-1,p). By taking appropriate limits of these parameters, they were able to obtain the characters of model M(p,p+1)M(p,p+1), N=1N=1 model SM(p,p+2)SM(p,p+2), and the unitary N=2N=2 model with central charge c=3(12p)c=3(1-{\frac{2}{p}}). In this letter we computed the effective central charge associated with this `generalized' character formula using a saddle point method. The result is a simple expression in dilogarithms which interpolates between the central charges of these unitary models.Comment: Latex2e, requires cite.sty package, 13 pages. Additional footnote, citation and reference

    Pyroxenes and olivines in crystalline rocks from ocean of storms

    Get PDF
    Determination of petrology and deformational state of pyroxenes and olivines in lunar rocks returned by Apollo 12 fligh

    The quantum one-time pad in the presence of an eavesdropper

    Get PDF
    A classical one-time pad allows two parties to send private messages over a public classical channel -- an eavesdropper who intercepts the communication learns nothing about the message. A quantum one-time pad is a shared quantum state which allows two parties to send private messages or private quantum states over a public quantum channel. If the eavesdropper intercepts the quantum communication she learns nothing about the message. In the classical case, a one-time pad can be created using shared and partially private correlations. Here we consider the quantum case in the presence of an eavesdropper, and find the single letter formula for the rate at which the two parties can send messages using a quantum one-time pad

    Quasi-Normal Mode Expansion for Linearized Waves in Gravitational Systems

    Full text link
    The quasinormal modes (QNM's) of gravitational systems modeled by the Klein-Gordon equation with effective potentials are studied in analogy to the QNM's of optical cavities. Conditions are given for the QNM's to form a complete set, i.e., for the Green's function to be expressible as a sum over QNM's, answering a conjecture by Price and Husain [Phys. Rev. Lett. {\bf 68}, 1973 (1992)]. In the cases where the QNM sum is divergent, procedures for regularization are given. The crucial condition for completeness is the existence of spatial discontinuities in the system, e.g., the discontinuity at the stellar surface in the model of Price and Husain.Comment: 12 pages, WUGRAV-94-
    corecore