1,999 research outputs found

    Interruption of Medium-Voltage Direct-Currents by Seperation of Contact Elements in Mineral Oil Using an Ultra Fast Electro-Magnetic Actuator

    Get PDF
    The increasing usage of medium-voltage direct-current in upcoming electrical energy grid topologies requests novel solutions for MVDC switching. The interruption of direct-currents is accomplished by enforcing a current zero crossing by adequate means and preventing reignition due to the recovering dc voltage. This paper evaluates the rapid separation of the contact elements in mineral oil leading to a liquid flow around the contact elements and the switching arc. The energy turnover of dielectric liquids interacting with an electric arc is considerably higher leading to heavily increased arc voltages compared to dielectric gases. This paper confirms results of earlier publications and carries them further towards a possible usage in an MVDC switching or protection device. Thus a contact arrangement surrounded by mineral oil in combination with an ultra fast electro-magnetic actuator is introduced and performed measurements are discussed

    Freeform Extrusion of High Solids Loading Ceramic Slurries, Part I: Extrusion Process Modeling

    Get PDF
    A novel solid freeform fabrication method has been developed for the manufacture of ceramic-based components in an environmentally friendly fashion. The method is based on the extrusion of ceramic slurries using water as the binding media. Aluminum oxide (Al2O3) is currently being used as the part material and solids loading as high as 60 vol. % has been achieved. This paper describes a manufacturing machine that has been developed for the extrusion of high solids loading ceramic slurries. A critical component of the machine is the deposition system, which consists of a syringe, a plunger, a ram actuated by a motor that forces the plunger down to extrude material, and a load cell to measure the extrusion force. An empirical, dynamic model of the ceramic extrusion process, where the input is the commanded ram velocity and the output is the extrusion force, is developed. Several experiments are conducted and empirical modeling techniques are utilized to construct the dynamic model. The results demonstrate that the ceramic extrusion process has a very slow dynamic response, as compared to other non-compressible fluids such as water. A substantial amount of variation exists in the ceramic extrusion process, most notably in the transient dynamics, and a constant ram velocity may either produce a relatively constant steady-state extrusion force or it may cause the extrusion force to steadily increase until the ram motor skips. The ceramic extrusion process is also subjected to significant disturbances such as air bubble release, which causes a dramatic decrease in the extrusion force, and nozzle clogging, which causes the extrusion force to slowly increase until the clog is released or the ram motor skips.Mechanical Engineerin

    Freeform Extrusion of High Solids Loading Ceramic Slurries, Part II: Extrusion Process Control

    Get PDF
    Part I of this paper provided a detailed description of a novel fabrication machine for high solids loading ceramic slurry extrusion and presented an empirical model of the ceramic extrusion process, with ram velocity as the input and extrusion force as the output. A constant force is desirable in freeform extrusion processes as it correlates with a constant material deposition rate and, thus, good part quality. The experimental results in Part I demonstrated that a constant ram velocity will produce a transient extrusion force. In some instances the extrusion force increased until ram motor skipping occurred. Further, process disturbances, such as air bubble release and nozzle clogging that cause sudden changes in extrusion force, were often present. In this paper a feedback controller for the ceramic extrusion process is designed and experimentally implemented. The controller intelligently adjusts the ram motor velocity to maintain a constant extrusion force. Since there is tremendous variability in the extrusion process characteristics, an on-off controller is utilized in this paper. Comparisons are made between parts fabricated with and without the feedback control. It is demonstrated that the use of the feedback control reduces the effect of process disturbances (i.e., air bubble release and nozzle clogging) and dramatically improves part quality.Mechanical Engineerin

    Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    Get PDF
    Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of the extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests are conducted to determine the optimal deposition parameters for starting and stopping the extrudate on demand. The collected test data is used for the development of a deposition strategy that improves material deposition consistency, including reduced material buildup at sharp corners. Example parts are fabricated using the deposition strategy and hardware design.Mechanical Engineerin

    Measurement of Electric Conductivity of Hot Gas in a SF6-circuit Breaker Interrupting Fault Currents

    Get PDF
    The realization of a new measurement method to determine electric conductivity of hot SF6-gas during interruption fault currents in an original self-blast circuit breaker is presented. The method is based on evaluation of phase shift between sinusoidal kHz-high voltage and current, applied on a sensor. This needs a kHz-resonance voltage generator and adapted sensors as a part of an electromagnetic shielded measurement system to determine time dependent electric conductivity with high resolution

    Effects of Bioactive Glass Scaffold and BMP-2 in Segmental Defects

    Get PDF
    poster abstractReconstruction of segmental defects in the load-bearing area has long been a challenge in orthopaedics. We have demonstrated the feasibility of a biodegradable load-bearing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself. Furthermore, a recent review on BMP-2 revealed greater risks in radiculities, ectopic bone formation, osteolysis and poor global outcome in association with the use of BMP-2 for spinal fusion. The aims of this study were to evaluate the potential use of a more osteoconductive material 13-93 bioactive glass and the potential side effects of locally delivered BMP-2 on adjacent bones. 13-93 glass scaffolds were fabricated by indirect selective laser sintering and implanted into critical size defects created in rat right femurs with and without 10 micrograms of BMP-2. The X-ray and micro-CT results showed that bridging callus was found as soon as 3 weeks and progressed gradually in the BMP group while minimal bone formation was observed in the control group. As expected, stiffness, peak load and energy to break of the BMP group were all higher than the control group. Higher healing rates in the 13-93 group was found compared to the healing rate in PPF/TCP group evaluated in the past indicating a more osteoconductive nature of the 13-93 scaffolds. The scaffolds of both control and BMP groups were partially degraded after 15 weeks as seen in the histological images. For the effects of local BMP-2 delivery to adjacent bones, no statistical difference in the bone area, mineral content and mineral density was found between control and BMP groups. In conclusion, a 13-93 bioactive glass scaffold with local BMP-2 delivery has been demonstrated for its potential application in treating large bone defects

    Influence of Magnetism on Phonons in CaFe2As2 Via Inelastic X-ray Scattering

    Full text link
    In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin polarized calculations imposing the antiferromagnetic order present in the low temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.Comment: 4 pages, 3 figures; added additional information and references about spin fluctuation

    Predictors of antiretroviral therapy initiation in eThekwini (Durban), South Africa: Findings from a prospective cohort study

    Get PDF
    Despite expanded antiretroviral therapy (ART) eligibility in South Africa, many people diagnosed with HIV do not initiate ART promptly, yet understanding of the reasons is limited. Using data from an 8-month prospective cohort interview study of women and men newly-diagnosed with HIV in three public-sector primary care clinics in the eThekwini (Durban) region, South Africa, 2010–2014, we examined if theoretically-relevant social-structural, social-cognitive, psychosocial, and health status indicators were associated with time to ART initiation. Of 459 diagnosed, 350 returned to the clinic for their CD4+ test results (linkage); 153 (33.3%) were ART-eligible according to treatment criteria at the time; 115 (75.2% of those eligible) initiated ART (median = 12.86 weeks [95% CI: 9.75, 15.97] after linkage). In adjusted Cox proportional hazard models, internalized stigma was associated with a 65% decrease in the rate of ART initiation (Adjusted hazard ratio [AHR] 0.35, 95% CI: 0.19–0.80) during the period less than four weeks after linkage to care, but not four or more weeks after linkage to care, suggesting that stigma-reduction interventions implemented shortly after diagnosis may accelerate ART uptake. As reported by others, older age was associated with more rapid ART initiation (AHR for 1-year age increase: 1.04, 95% CI: 1.01–1.07) and higher CD4+ cell count (≥300μL vs. <150μL) was associated with a lower rate of initiation (AHR 0.38, 95% CI: 0.19–0.80). Several other factors that were assessed prior to diagnosis, including stronger belief in traditional medicine, higher endorsement of stigma toward people living with HIV, food insecurity, and higher psychological distress, were found to be in the expected direction of association with ART initiation, but confidence intervals were wide and could not exclude a null finding

    A constrained Potts antiferromagnet model with an interface representation

    Full text link
    We define a four-state Potts model ensemble on the square lattice, with the constraints that neighboring spins must have different values, and that no plaquette may contain all four states. The spin configurations may be mapped into those of a 2-dimensional interface in a 2+5 dimensional space. If this interface is in a Gaussian rough phase (as is the case for most other models with such a mapping), then the spin correlations are critical and their exponents can be related to the stiffness governing the interface fluctuations. Results of our Monte Carlo simulations show height fluctuations with an anomalous dependence on wavevector, intermediate between the behaviors expected in a rough phase and in a smooth phase; we argue that the smooth phase (which would imply long-range spin order) is the best interpretation.Comment: 61 pages, LaTeX. Submitted to J. Phys.

    Enhanced magnetocaloric effect in frustrated magnets

    Full text link
    The magnetothermodynamics of strongly frustrated classical Heisenberg antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The field induced adiabatic temperature change (dT/dH)_S is significantly larger for such systems compared to ordinary non-frustrated magnets and also exceeds the cooling rate of an ideal paramagnet in a wide range of fields. An enhancement of the magnetocaloric effect is related to presence of a macroscopic number of soft modes in frustrated magnets below the saturation field. Theoretical predictions are confirmed with extensive Monte Carlo simulations.Comment: 7 page
    corecore