67 research outputs found

    Big sugar in southern Africa : rural development and the perverted potential of sugar/ethanol exports

    Get PDF
    This paper asks how investment in large-scale sugar cane production has contributed, and will contribute, to rural development in southern Africa. Taking a case study of the South African company Illovo in Zambia, the argument is made that the potential for greater tax revenue, domestic competition, access to resources and wealth distribution from sugar/ethanol production have all been perverted and with relatively little payoff in wage labour opportunities in return. If the benefits of agro-exports cannot be so easily assumed, then the prospective 'balance sheet' of biofuels needs to be re-examined. In this light, the paper advocates smaller-scale agrarian initiatives

    Loss of Sugar Detection by GLUT2 Affects Glucose Homeostasis in Mice

    Get PDF
    International audienceBACKGROUND: Mammals must sense the amount of sugar available to them and respond appropriately. For many years attention has focused on intracellular glucose sensing derived from glucose metabolism. Here, we studied the detection of extracellular glucose concentrations in vivo by invalidating the transduction pathway downstream from the transporter-detector GLUT2 and measured the physiological impact of this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We produced mice that ubiquitously express the largest cytoplasmic loop of GLUT2, blocking glucose-mediated gene expression in vitro without affecting glucose metabolism. Impairment of GLUT2-mediated sugar detection transiently protected transgenic mice against starvation and streptozotocin-induced diabetes, suggesting that both low- and high-glucose concentrations were not detected. Transgenic mice favored lipid oxidation, and oral glucose was slowly cleared from blood due to low insulin production, despite massive urinary glucose excretion. Kidney adaptation was characterized by a lower rate of glucose reabsorption, whereas pancreatic adaptation was associated with a larger number of small islets. CONCLUSIONS/SIGNIFICANCE: Molecular invalidation of sugar sensing in GLUT2-loop transgenic mice changed multiple aspects of glucose homeostasis, highlighting by a top-down approach, the role of membrane glucose receptors as potential therapeutic targets

    Intestinal Resident Yeast Candida glabrata Requires Cyb2p-Mediated Lactate Assimilation to Adapt in Mouse Intestine

    Get PDF
    The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata

    Sodium ion interactions with aqueous glucose: Insights from quantum mechanics, molecular dynamics, and experiment

    Get PDF
    In the last several decades, significant efforts have been conducted to understand the fundamental reactivity of glucose derived from plant biomass in various chemical environments for conversion to renewable fuels and chemicals. For reactions of glucose in water, it is known that inorganic salts naturally present in biomass alter the product distribution in various deconstruction processes. However, the molecular-level interactions of alkali metal ions and glucose are unknown. These interactions are of physiological interest as well, for example, as they relate to cation-glucose cotransport. Here, we employ quantum mechanics (QM) to understand the interaction of a prevalent alkali metal, sodium, with glucose from a structural and thermodynamic perspective. The effect on B-glucose is subtle: a sodium ion perturbs bond lengths and atomic partial charges less than rotating a hydroxymethyl group. In contrast, the presence of a sodium ion significantly perturbs the partial charges of α-glucose anomeric and ring oxygens. Molecular dynamics (MD) simulations provide dynamic sampling in explicit water, and both the QM and the MD results show that sodium ions associate at many positions with respect to glucose with reasonably equivalent propensity. This promiscuous binding nature of Na + suggests that computational studies of glucose reactions in the presence of inorganic salts need to ensure thorough sampling of the cation positions, in addition to sampling glucose rotamers. The effect of NaCl on the relative populations of the anomers is experimentally quantified with light polarimetry. These results support the computational findings that Na + interacts similarly with a- and B-glucose

    Long-Term Benefits from Early Antiretroviral Therapy Initiation in HIV Infection

    Get PDF
    BACKGROUND: For people with HIV and CD4+ counts >500 cells/mm3, early initiation of antiretroviral therapy (ART) reduces serious AIDS and serious non-AIDS (SNA) risk compared with deferral of treatment until CD4+ counts are 500 cells/mm3, excess risk of AIDS and SNA associated with delaying treatment initiation was diminished after ART initiation, but persistent excess risk remained. (Funded by the National Institute of Allergy and Infectious Diseases and others.)

    Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

    Get PDF

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection

    Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat

    Get PDF
    Extent: 10p.Shift work during pregnancy is associated with an increased risk for preterm birth and low birth weight. However, the impact upon the long term health of the children is currently unknown. In this study, we used an animal model to determine the consequences of maternal shift work exposure on the health of the adult offspring. Pregnant rats were exposed to chronic phase shifts (CPS) in their photoperiod every 3–4 days throughout gestation and the first week after birth. Adult offspring were assessed for a range of metabolic, endocrine, circadian and neurobehavioural parameters. At 3 months of age, male pups exposed to the CPS schedule in utero had increased adiposity (+29%) and hyperleptinaemia (+99% at 0700h). By 12 months of age, both male and female rats displayed hyperleptinaemia (+26% and +41% respectively) and hyperinsulinaemia (+110% and +83% respectively). 12 month old female CPS rats displayed poor glucose tolerance (+18%) and increased insulin secretion (+29%) in response to an intraperitoneal glucose tolerance test. In CPS males the glucose response was unaltered, but the insulin response was reduced by 35%. The glucose response to an insulin tolerance test was decreased by 21% in CPS females but unaltered in males. Disruption of circadian rhythmicity during gestation resulted in gender dependent metabolic consequences for the adult offspring. These results highlight the need for a thorough analysis of shift work exposure in utero on the health of the adult offspring in humans.Tamara J. Varcoe, Nicole Wight, Athena Voultsios, Mark D. Salkeld and David J. Kennawa

    The loss of P2X7 receptor expression leads to increase intestinal glucose transit and hepatic steatosis

    Get PDF
    In intestinal epithelial cells (IEC), it was reported that the activation of the P2X7 receptor leads to the internalization of the glucose transporter GLUT2, which is accompanied by a reduction of IEC capacity to transport glucose. In this study, we used P2rx7−/− mice to decipher P2X7 functions in intestinal glucose transport and to evaluate the impacts on metabolism. Immunohistochemistry analyses revealed the presence of GLUT2 at the apical domain of P2rx7−/− jejunum enterocytes. Positron emission tomography and biodistribution studies demonstrated that glucose was more efciently delivered to the circulation of knockout animals. These fndings correlated with increase blood glucose, insulin, triglycerides and cholesterol levels. In fact, P2rx7−/− mice had increased serum triglyceride and cholesterol levels and displayed glucose intolerance and resistance to insulin. Finally, P2rx7−/− mice developed a hepatic steatosis characterized by a reduction of Acaca, Acacb, Fasn and Acox1 mRNA expression, as well as for ACC and FAS protein expression. Our study suggests that P2X7 could play a central role in metabolic diseases
    corecore