13 research outputs found
HIF-α Effects on c-Myc Distinguish Two Subtypes of Sporadic VHL-Deficient Clear Cell Renal Carcinoma
VHL tumor suppressor loss results in hypoxia inducible factor-alpha (HIF-α) stabilization, and occurs in 70% of sporadic clear cell renal carcinomas (ccRCCs). To determine whether opposing influences of HIF-1α and HIF-2α on c-Myc activity regulate human ccRCC progression, we analyzed VHL genotype and HIF-α expression in 160 primary tumors, which segregated into three groups with distinct molecular characteristics. Interestingly, ccRCCs with intact VHL, as well as pVHL-deficient, HIF-1α/HIF-2α expressing ccRCCs, exhibited enhanced Akt/mTOR and ERK/MAPK signaling. In contrast, pVHL-deficient ccRCCs expressing only HIF-2α displayed elevated c-Myc activity, resulting in enhanced proliferation and resistance to replication stress. These reproducible distinctions in ccRCC behavior delineate HIF-α effects on c-Myc in vivo and suggest molecular criteria for selecting targeted therapies
Common ataxia telangiectasia mutated haplotypes and risk of breast cancer: a nested case–control study
INTRODUCTION: The ataxia telangiectasia mutated (ATM) gene is a tumor suppressor gene with functions in cell cycle arrest, apoptosis, and repair of DNA double-strand breaks. Based on family studies, women heterozygous for mutations in the ATM gene are reported to have a fourfold to fivefold increased risk of breast cancer compared with noncarriers of the mutations, although not all studies have confirmed this association. Haplotype analysis has been suggested as an efficient method for investigating the role of common variation in the ATM gene and breast cancer. Five biallelic haplotype tagging single nucleotide polymorphisms are estimated to capture 99% of the haplotype diversity in Caucasian populations. METHODS: We conducted a nested case–control study of breast cancer within the Nurses' Health Study cohort to address the role of common ATM haplotypes and breast cancer. Cases and controls were genotyped for five haplotype tagging single nucleotide polymorphisms. Haplotypes were predicted for 1309 cases and 1761 controls for which genotype information was available. RESULTS: Six unique haplotypes were predicted in this study, five of which occur at a frequency of 5% or greater. The overall distribution of haplotypes was not significantly different between cases and controls (χ(2 )= 3.43, five degrees of freedom, P = 0.63). CONCLUSION: There was no evidence that common haplotypes of ATM are associated with breast cancer risk. Extensive single nucleotide polymorphism detection using the entire genomic sequence of ATM will be necessary to rule out less common variation in ATM and sporadic breast cancer risk
Oncogene advance online publication
Here, we identify a panel of melanoma lines with non-V600E mutations in BRAF. These G469E-and D594G-mutated melanomas were found to exhibit constitutive levels of phospho-extracellular signal-regulated kinase (pERK) and low levels of phospho-mitogen-activated protein kinase/ERK kinase (pMEK) and were resistant to MEK inhibition. Upon treatment with the CRAF inhibitor sorafenib, these lines underwent apoptosis and associated with mitochondrial depolarization and relocalization of apoptosis-inducing factor, whereas the BRAF-V600E-mutated melanomas did not. Studies have shown low-activity mutants of BRAF (G469E/D594G) instead signal through CRAF. Unlike BRAF, CRAF directly regulates apoptosis through mitochondrial localization where it binds to Bcl-2 and phosphorylates BAD. The CRAF inhibitor sorafenib was found to induce a timedependent reduction in both BAD phosphorylation and Bcl-2 expression in the D594G/G469E lines only. Knockdown of CRAF using a lentiviral shRNA suppressed both Bcl-2 expression and induced apoptosis in the D594G melanoma line but not in a V600E-mutated line. Finally, we showed in a series of xenograft studies that sorafenib was more potent at reducing the growth of tumors with the D594G mutation than those with the V600E mutation. In summary, we have identified a group of melanomas with low-activity BRAF mutations that are reliant upon CRAF-mediated survival activity
Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436)
PurposeDabrafenib is a selective inhibitor of V600-mutant BRAF kinase, which recently showed improved progression-free survival (PFS) as compared with dacarbazine, in metastatic melanoma patients. This study examined potential genetic markers associated with response and PFS in the phase I study of dabrafenib.Experimental designBaseline (pretreatment or archival) melanoma samples were evaluated in 41 patients using a custom genotyping melanoma-specific assay, sequencing of PTEN, and copy number analysis using multiplex ligation amplification and array-based comparative genomic hybridization. Nine patients had on-treatment and/or progression samples available.ResultsAll baseline patient samples had BRAF(V600E/K) confirmed. Baseline PTEN loss/mutation was not associated with best overall response to dabrafenib, but it showed a trend for shorter median PFS [18.3 (95% confidence interval, CI, 9.1-24.3) vs. 32.1 weeks (95% CI, 24.1-33), P=0.059]. Higher copy number of CCND1 (P=0.009) and lower copy number of CDKN2A (P=0.012) at baseline were significantly associated with decreased PFS. Although no melanomas had high-level amplification of BRAF, the two patients with progressive disease as their best response had BRAF copy gain in their tumors.ConclusionsCopy number changes in CDKN2A, CCND1, and mutation/copy number changes in PTEN correlated with the duration of PFS in patients treated with dabrafenib. The results suggest that these markers should be considered in the design and interpretation of future trials with selective BRAF inhibitors in advanced melanoma patients.Katherine L. Nathanson, Anne-Marie Martin, Bradley Wubbenhorst, Joel Greshock, Richard Letrero, Kurt D'Andrea, Steven O'Day, Jeffrey R. Infante, Gerald S. Falchook, Hendrik-Tobias Arkenau, Michael Millward, Michael P. Brown, Anna Pavlick, Michael A. Davies, Bo Ma, Robert Gagnon, Martin Curtis, Peter F. Lebowitz, Richard Kefford, and Georgina V. Lon
The Y deletion gr/gr and susceptibility to testicular germ cell tumor
The Y deletion gr/gr and susceptibility to testicular germ cell tumor Testicular germ cell tumor (TGCT) is the most common cancer in young men. Despite a considerable familial component to TGCT risk, no genetic change that confers increased risk has been substantiated to date. The human Y chromosome carries a number of genes specifically involved in male germ cell development, and deletion of the AZFc region at Yq11 is the most common known genetic cause of infertility. Recently, a 1.6-Mb deletion of the Y chromosome that removes part of the AZFc region-known as the "gr/gr" deletion-has been associated with infertility. In epidemiological studies, male infertility has shown an association with TGCT that is out of proportion with what can be explained by tumor effects. Thus, we hypothesized that the gr/gr deletion may be associated with TGCT. Using logistic modeling, we analyzed this deletion in a large series of TGCT cases with and without a family history of TGCT. The gr/gr deletion was present in 3.0% (13/431) of TGCT cases with a family history, 2% (28/1,376) of TGCT cases without a family history, and 1.3% (33/2,599) of unaffected males. Presence of the gr/gr deletion was associated with a twofold increased risk of TGCT (adjusted odds ratio [aOR] 2.1; 95% confidence interval [CI] 1.3-3.6; P = .005) and a threefold increased risk of TGCT among patients with a positive family history (aOR 3.2; 95% CI 1.5-6.7; P = .0027). The gr/gr deletion was more strongly associated with seminoma (aOR 3.0; 95% CI 1.6-5.4; P = .0004) than with nonseminoma TGCT (aOR 1.5; 95% CI 0.72-3.0; P = .29). These data indicate that the Y microdeletion gr/gr is a rare, low-penetrance allele that confers susceptibility to TGCT