5 research outputs found

    Evaluation of ECMWF ERA-40 temperature and wind in the lower tropical stratosphere since 1988 from past long-duration balloon measurements

    Get PDF
    International audienceThe temperature and wind of the ECMWF ERA-40 reanalysis in the tropical lower stratosphere during the period 1988–2001 has been evaluated by comparison with independent in situ measurements of 21 IR Montgolfier and superpressure long-duration balloon flights performed by CNES from Pretoria (26° S) in South Africa in 1988–1989, Latacunga (1° S) in Ecuador in 1991–1998 and Bauru (22° S) in Brazil in 2000–2001. The ERA-40 temperature displays a bias varying progressively from +1.16 K in 1988–1989, to +0.26 K in 1994–1996 and -0.46 K after 1998, the latter being fully consistent with recent evaluations of ECMWF operational analysis from radio occultation and in situ long-duration balloon observations. The amplitude of the bias and its evolution are very similar to the results of a previous evaluation from radiosondes in 1991–2003, suggesting that the origin of the drift of ERA-40 might be mainly due to errors in the series of satellite measurements of MSU, replaced by AMSU in 1998, assimilated in the model. The ERA-40 zonal wind speed in the lower stratosphere appears slightly overestimated by 0.7–1.0 m/s on average in both the tropics and equatorial region, that is by 5–10% compared to the average 10–20 m/s wind speed. This bias, fully consistent with a recent evaluation of ECMWF operational analysis in 2004, is found constant during the whole 1988–2001 period, suggesting a shortfall in the variabililty of ERA-40 horizontal winds in the lower stratosphere in the tropics and the equatorial region. Finally calculated trajectories using ERA-40, frequently used for analysing field observations, are found in error compared to that of the balloons by ±500 km after 5 days and ±1000 km after 10 days

    An overview of the HIBISCUS campaign

    No full text
    International audienceThe EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans. Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s−1 at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics
    corecore