777 research outputs found
What Risk Assessments of Genetically Modified Organisms Can Learn from Institutional Analyses of Public Health Risks
The risks of genetically modified organisms (GMOs) are evaluated traditionally by combining hazard identification and exposure estimates to provide decision support for regulatory agencies. We question the utility of the classical risk paradigm and discuss its evolution in GMO risk assessment. First, we consider the problem of uncertainty, by comparing risk assessment for environmental toxins in the public health domain with genetically modified organisms in the environment; we use the specific comparison of an insecticide to a transgenic, insecticidal food crop. Next, we examine normal accident theory (NAT) as a heuristic to consider runaway effects of GMOs, such as negative community level consequences of gene flow from transgenic, insecticidal crops. These examples illustrate how risk assessments are made more complex and contentious by both their inherent uncertainty and the inevitability of failure beyond expectation in complex systems. We emphasize the value of conducting decision-support research, embracing uncertainty, increasing transparency, and building interdisciplinary institutions that can address the complex interactions between ecosystems and society. In particular, we argue against black boxing risk analysis, and for a program to educate policy makers about uncertainty and complexity, so that eventually, decision making is not the burden that falls upon scientists but is assumed by the public at large
Monomorphic Epitheliotropic Intestinal T-Cell Lymphoma in Asia Frequently Shows SETD2 Alterations.
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare primary T-cell lymphoma of the digestive tract derived from intraepithelial lymphocytes and characterized by an aggressive clinical course. In this study, nine cases of Japanese MEITL were analyzed by targeted Next Generation Sequencing (NGS) and immunohistochemistry and were integrated with previously reported whole-genome copy number microarray-based assay data. The highlight of our findings is that all cases showed alterations of the tumor suppressor gene SETD2 by mutations and/or loss of the corresponding 3p21 locus. We also demonstrated that all cases showed mutations in one or more genes of JAK/STAT pathway. Therefore, the combination of epigenetic deregulation and cell signaling activation represent major oncogenic events in the pathogenesis of MEITL in Asian MEITL, similar to Western MEITL
White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND
We propose to test for short baseline neutrino oscillations, implied by the
recent reevaluation of the reactor antineutrino flux and by anomalous results
from the gallium solar neutrino detectors. The test will consist of producing a
75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid
Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target
volume provides a suitable environment to measure energy and position
dependence of the detected neutrino flux. A characteristic oscillation pattern
would be visible for a baseline of about 10 m or less, providing a very clean
signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a
measurement will be free of any reactor-related uncertainties. After 1.5 years
of data taking the Reactor Antineutrino Anomaly parameter space will be tested
at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author
lis
CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND
The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq
(75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center
or next to a large low-background liquid scintillator detector. The
antineutrino generator will be produced by the Russian reprocessing plant PA
Mayak as early as 2014, transported to Japan, and deployed in the Kamioka
Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015.
KamLAND's 13 m diameter target volume provides a suitable environment to
measure the energy and position dependence of the detected neutrino flux. A
characteristic oscillation pattern would be visible for a baseline of about 10
m or less, providing a very clean signal of neutrino disappearance into a
yet-unknown, sterile neutrino state. This will provide a comprehensive test of
the electron dissaperance neutrino anomalies and could lead to the discovery of
a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.Comment: 67 pages, 50 figures. Th. Lasserre thanks the European Research
Council for support under the Starting Grant StG-30718
Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes In Rhizosphere \u3ci\u3ePseudomonas\u3c/i\u3e
Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains’ pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts
Do psychosocial interventions have an impact on maternal perception of perinatal depression?
YesPoor perinatal mental health, in particular depression, affects at least 10% of new mothers in the UK. Current best practice recommends the use of talking therapies or medication, however, many women choose not to use medication or are deterred from accessing NHS services for example due to immigration status. Those who can access NHS treatment often face a long waiting list to see a clinician or therapist. Untreated perinatal depression impacts on the health and wellbeing of mothers and babies, consequently it is essential that alternative psychosocial interventions delivered by non-clinicians are considered. A systematic review was conducted on seven quantitative studies examining the effect of psychosocial interventions in reducing maternal symptoms of depression. Interventions focused either on physical activity or peer support, measuring depression scores on a validated screening tool. The review concludes that antenatal group peer support may benefit women in the antenatal period and that postnatal peer telephone support may be helpful for primiparous women but further large scale research is required
Exploring the effectiveness of the output-based aid voucher program to increase uptake of gender-based violence recovery services in Kenya: a qualitative evaluation
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Few studies in Africa have explored in detail the ability of output-based aid (OBA) voucher programs to increase access to gender-based violence recovery (GBVR) services. Methods: A qualitative study was conducted in 2010 and involved: (i) in-depth interviews (IDIs) with health managers, service providers, voucher management agency (VMA) managers and (ii) focus group discussions (FGDs) with voucher users, voucher non-users, voucher distributors and opinion leaders drawn from five program sites in Kenya. Results: The findings showed promising prospects for the uptake of OBA GBVR services among target population. However, a number of factors affect the uptake of the services. These include lack of general awareness of the GBVR services vouchers, lack of understanding of the benefit package, immediate financial needs of survivors, as well as stigma and cultural beliefs that undermine reporting of cases or seeking essential medical services. Moreover, accreditation of only hospitals to offer GBVR services undermines access to the services in rural areas. Poor responsiveness from law enforcement agencies and fear of reprisal from perpetrators also undermine treatment options and access to medical services. Low provider knowledge on GBVR services and lack of supplies also affect effective provision and management of GBVR services. Conclusions: The above findings suggest that there is a need to build the capacity of health care providers and police officers, strengthen the community strategy component of the OBA program to promote the GBVR services voucher, and conduct widespread community education programs aimed at prevention, ensuring survivors know how and where to access services and addressing stigma and cultural barriers.The Bill and Melinda Gates Foundatio
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Recommended from our members
Advances of the FRIB project
The Facility for Rare Isotope Beams (FRIB) Project has entered the phase of beam commissioning starting from the room-temperature front end and the superconducting linac segment of first 15 cryomodules. With the newly commissioned helium refrigeration system supplying 4.5K liquid helium to the quarter-wave resonators and solenoids, the FRIB accelerator team achieved the sectional key performance parameters as designed ahead of schedule accelerating heavy ion beams above 20MeV/u energy. Thus, FRIB accelerator becomes world's highest-energy heavy ion linear accelerator. We also validated machine protection and personnel protection systems that will be crucial to the next phase of commissioning. FRIB is on track towards a national user facility at the power frontier with a beam power two orders of magnitude higher than operating heavy-ion facilities. This paper summarizes the status of accelerator design, technology development, construction, commissioning as well as path to operations and upgrades
- …