54 research outputs found

    Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration.

    Get PDF
    BACKGROUND: Polycystin-1 (PC-1) is a large plasma membrane receptor, encoded by the PKD1 gene, which is mutated in most cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD). The disease is characterized by renal cysts. The precise function of PC-1 remains elusive, although several studies suggest that it can regulate the cellular shape in response to external stimuli. We and others reported that PC-1 regulates the actin cytoskeleton and cell migration. RESULTS: Here we show that cells over-expressing PC-1 display enhanced adhesion rates to the substrate, while cells lacking PC-1 have a reduced capability to adhere. In search for the mechanism responsible for this new property of PC-1 we found that this receptor is able to regulate the stability of the microtubules, in addition to its capability to regulate the actin cytoskeleton. The two cytoskeletal components are acting in a coordinated fashion. Notably, we uncovered that PC-1 regulation of the microtubule cytoskeleton impacts on the turnover rates of focal adhesions in migrating cells and we link all these properties to the capability of PC-1 to regulate the activation state of Focal Adhesion Kinase (FAK). CONCLUSIONS: In this study we show several new features of the PC-1 receptor in modulating microtubules and adhesion dynamics, which are essential for its capability to regulate migration. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-015-0059-3) contains supplementary material, which is available to authorized users

    Regulation of the Rab5 GTPase-activating protein RN-tre by the dual specificity phosphatase Cdc14A in human cells.

    Get PDF
    The Cdc14 family of dual specificity phosphatases regulates key mitotic events in the eukaryotic cell cycle. Although extensively characterized in yeast, little is known about the function of mammalian Cdc14 family members. Here we report a genetic substrate-trapping system designed to identify substrates of the human Cdc14A (hCdc14A) phosphatase. Using this approach, we identify RN-tre, a GTPase-activating protein for the Rab5 GTPase, as a novel physiological target of hCdc14A. As a Rab5 GTPase-activating protein, RN-tre has previously been implicated in control of intracellular membrane trafficking. We find that RN-tre forms a stable complex with the catalytically inactive hCdc14A C278S mutant but not with the wild type protein in human cells, indicative of a substrate/enzyme interaction. In support, we show that RN-tre is regulated by cell cycle-dependent phosphorylation peaking at mitosis, which can be antagonized by hCdc14A activity in vitro as well as in vivo. Furthermore, we show that RN-tre phosphorylation is critical for efficient hCdc14A association and that RN-tre binding can be displaced by tungstate, a competitive inhibitor that binds to the active site of hCdc14A. Consistent with the preference of hCdc14A for phosphorylations mediated by proline-directed kinases, we find that RN-tre is a direct substrate of cyclin-dependent kinase. Finally, phosphorylation of RN-tre appears to finely modulate its catalytic activity. Our findings reveal a novel connection between the cell cycle machinery and the endocytic pathway

    Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase

    Get PDF
    Phagosomal biogenesis is central for microbial killing and antigen presentation by leukocytes. However, the molecular mechanisms governing phagosome maturation are poorly understood. We analyzed the role and site of action of phosphatidylinositol 3-kinases (PI3K) and of Rab GTPases in maturation using both professional and engineered phagocytes. Rab5, which is recruited rapidly and transiently to the phagosome, was found to be essential for the recruitment of Rab7 and for progression to phagolysosomes. Similarly, functional PI3K is required for successful maturation. Remarkably, inhibition of PI3K did not preclude Rab5 recruitment to phagosomes but instead enhanced and prolonged it. Moreover, in the presence of PI3K inhibitors Rab5 was found to be active, as deduced from measurements of early endosome antigen 1 binding and by photobleaching recovery determinations. Though their ability to fuse with late endosomes and lysosomes was virtually eliminated by wortmannin, phagosomes nevertheless recruited a sizable amount of Rab7. Moreover, Rab7 recruited to phagosomes in the presence of PI3K antagonists retained the ability to bind its effector, Rab7-interacting lysosomal protein, suggesting that it is functionally active. These findings imply that (i) dissociation of Rab5 from phagosomes requires products of PI3K, (ii) PI3K-dependent effectors of Rab5 are not essential for the recruitment of Rab7 by phagosomes, and (iii) recruitment and activation of Rab7 are insufficient to induce fusion of phagosomes with late endosomes and lysosomes. Accordingly, transfection of constitutively active Rab7 did not bypass the block of phagolysosome formation exerted by wortmannin. We propose that Rab5 activates both PI3K-dependent and PI3K-independent effectors that act in parallel to promote phagosome maturation

    The GTPase-activating protein RN-tre controls focal adhesion turnover and cell migration.

    Get PDF
    SummaryBackgroundIntegrin-mediated adhesion of cells to the extracellular matrix (ECM) relies on the dynamic formation of focal adhesions (FAs), which are biochemical and mechanosensitive platforms composed of a large variety of cytosolic and transmembrane proteins. During migration, there is a constant turnover of ECM contacts that initially form as nascent adhesions at the leading edge, mature into FAs as actomyosin tension builds up, and are then disassembled at the cell rear, thus allowing for cell detachment. Although the mechanisms of FA assembly have largely been defined, the molecular circuitry that regulates their disassembly still remains elusive.ResultsHere, we show that RN-tre, a GTPase-activating protein (GAP) for Rabs including Rab5 and Rab43, is a novel regulator of FA dynamics and cell migration. RN-tre localizes to FAs and to a pool of Rab5-positive vesicles mainly associated with FAs undergoing rapid remodeling. We found that RN-tre inhibits endocytosis of β1, but not β3, integrins and delays the turnover of FAs, ultimately impairing β1-dependent, but not β3-dependent, chemotactic cell migration. All of these effects are mediated by its GAP activity and rely on Rab5.ConclusionsOur findings identify RN-tre as the Rab5-GAP that spatiotemporally controls FA remodeling during chemotactic cell migration
    • …
    corecore