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Abstract 

 

Invasive growth is a complex biological program triggered by Hepatocyte Growth 

Factor (HGF) through its tyrosine kinase receptor encoded by the Met proto-oncogene. 

The program involves -besides proliferation- cell dissociation, motility and 

invasiveness, controlled by intracellular signals impinging on PI3K and on the small G-

proteins of the Rac/Rho family. The mechanism(s) unbalancing Rac/Rho activation are 

still not completely clarified. Here we describe a functional link between HGF and 

Arhgap12, a gene encoding a previously uncharacterized protein of the RhoGAP family. 

We identified Arhgap12 as a transcriptional target of HGF, through a novel gene 

trapping strategy. We found that Arhgap12 mRNA and protein are robustly suppressed 

by HGF treatment, but not by serum. Arhgap12 displayed GAP activity towards Rac1 

and, upon overexpression, impaired cell scattering, invasion and adhesion to fibronectin 

in response to HGF. Consistently, Arhgap12 silencing by RNA interference selectively 

increased the scatter and adhesion responses. These data show that HGF-driven invasive 

growth involves transcriptional regulation of a Rac1-specific GAP.  
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Introduction 

 

Invasive growth is a highly integrated biological program that instructs cells to 

dissociate from their neighbors, migrate through the extracellular matrix, colonize new 

sites, proliferate and differentiate. The program is orchestrated in time and space by 

specific extracellular ligands of the HGF family (Trusolino and Comoglio 2002). 

Invasive growth is physiologically required for tissue and organ morphogenesis during 

embryonic development, and it is aberrantly activated in the adult during cancer 

progression, conferring invasive and metastatic ability to neoplastic cells (Comoglio and 

Trusolino 2002; Birchmeier et al. 2003). HGF binds to and activates a specific 

transmembrane tyrosine-kinase receptor, encoded by the MET proto-oncogene (Ma et 

al. 2003). Met activation results in tyrosine phosphorylation of the c-terminal tail and 

recruitment of a wide spectrum of adaptors and signal transducers, including GRB2, 

STAT3, PLC-gamma and PI3K (Ponzetto et al. 1994; Boccaccio et al. 1998; Furge et al. 

2000; Bertotti and Comoglio 2003). Extensive studies linked the various biological 

processes controlled by Met to specific signaling pathways: (i) the GRB2-RAS-ERK 

pathway is the main driver of cell proliferation (Ponzetto et al. 1996); (ii) STAT3 

activation promotes branching morphogenesis (Boccaccio et al. 1998); (iii) 

phospholipase C-gamma is required for acquisition of cell polarity (Gual et al. 2000); 

(iv) PI3K drives survival through the Akt pathway (Zeng et al. 2002), and cell adhesion 

and motility  through small GTP-binding proteins of the Rho family (Royal and Park 

1995; Ridley et al. 1995; Parker 1995).  

The Rho-family GTPases are key players in actin cytoskeleton remodeling and 

subsequent regulation of cell migration and adhesion (Hall 1998). It is also known that 

Rho and Rac are involved in the establishment of cadherin-mediated cell-cell 

interactions (Braga et al. 1997), and that Rac promotes invasion (Wheeler et al. 2006). 

http://www.nature.com/ncb/journal/v4/n9/full/#B9
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The balance in the activities of Rho and Rac is tightly regulated and modulates cell 

adhesiveness (Zandy et al. 2007). Several GEFs and GAPs specifically activating and 

inactivating either Rho or Rac have been identified and characterized (Bar-Sagi and 

Hall 2000). 

Despite the knowledge accumulated, it is still unclear how Rho and Rac orchestrate the 

invasive growth response to HGF. By a functional screening aimed at identifying 

transcriptional targets of HGF, we identified the mRNA for a previously 

uncharacterized member of the RhoGAP family, Arhgap12. Functional studies showed 

that this GAP protein specifically inactivates Rac1 and plays a role in regulation of the 

invasive growth response to HGF. 
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Results 

 

Identification and validation of Arhgap12 as an HGF transcriptional target. 

It is known that HGF-stimulated scattering of epithelial cells requires de novo 

transcription and protein synthesis (Rosen et al. 1990). To identify genes potentially 

involved in HGF-driven invasive growth, we conceived a novel screening based on 

gene trapping. Our gene trap system exploits random integration of vectors carrying the 

PGN selectable reporter not preceded by a promoter, to generate reporter cell clones 

displaying the transcriptional activity of virtually any gene in the genome. PGN allows 

positive pharmacological selection by puromycin treatment, negative selection by 

metronidazole (MN) treatment and expression monitoring by flow cytometry (further 

details are provided in Supplementary Information and Supplementary Figure 1). 

Retroviral and lentiviral traps were used on MLP-29 mouse embryo liver cells (Medico 

et al. 1996) to identify genes transcriptionally regulated by HGF, either induced or 

suppressed, according to two selection schemes illustrated in Figure 1. The treatment 

cycles were repeated once to improve efficiency. We obtained 179 clones surviving the 

selection, of which more than 40% resulted to be responsive to HGF, which confirmed 

the high efficiency of the system. The range of regulation spanned from 6-fold induction 

to 2.2-fold suppression, with many of the traps responding within a 1.5-fold range, 

indicating that selection does not require extreme expression differences.  

Among the various clones, we selected for detailed analysis the one named SH24, 

which, unlike most others, changed its fluorescence only in response to HGF and not to 

serum, as assessed by FACS analysis (Figure 2A). As the PGN half-life is longer than 

24 hours (not shown), the observed 40% reduction of fluorescence at 48h is indicative 

of a strong transcriptional suppression. Using the newly developed “repeat-anchored 

PCR” procedure (see Supplementary Information and Supplementary Figure 2), we 
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mapped the SH24 trap integration site in the first exon of the Arhgap12 gene. Arhgap12 

encodes for a putative member of the RhoGAP family of proteins, which negatively 

regulate small GTP-binding proteins of the Rho family by promoting their intrinsic 

GTPase activity (Peck et al. 2002).  

We carried out quantitative Real-Time PCR on MLP-29 cells stimulated with HGF or 

serum and validated Arhgap12 specific response to HGF, peaking at 6 hours of 

stimulation with an 8-fold suppression (Figure 2B). Real-Time PCR analysis was also 

conducted on human cancer cell lines (A549, DU145, ARO and MDA-MB-435), 

showing a similar response but with different kinetics (Figure 2C). Interestingly, 

Arhgap12 suppression by HGF occurred in MDA-MB-435 only upon exogenous 

expression of Integrin Beta 4, known to act as a Met-signaling amplifier required for 

full biological response to HGF (Trusolino et al. 2001). To verify if Arhgap12 is 

specifically downregulated by HGF also at the protein level, we produced a polyclonal 

antibody to a GST-fusion containing an aminoacid sequence specific for Arhgap12 and 

conserved across species (human, mouse, dog). Western blot analysis confirmed protein 

downregulation by HGF (Figure 2D). Experiments with signaling inhibitors highlighted 

a broad and redundant spectrum of signaling pathways upstream Arhgap-12, as no 

single pathway inhibitor could abrogate its transcriptional regulation (not shown).  

 

Arhgap12 is a negative regulator of Rac1 

Typically, RhoGAP proteins share the ability to stimulate GTP hydrolysis by one or 

more specific members of the Rho family (Moon and Zheng 2003). In the case of 

Arhgap12, GAP activity was inferred by the presence of a typical GAP domain, though 

with no experimental evidence confirming its activity or determining its substrate 

specificity. Therefore we constructed and purified a fusion between the Arhgap12 GAP 

domain and GST (Supplementary Figure 3), and measured its GAP activity in vitro 
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towards the main representatives of the Rho family: RhoA, Rac1 and Cdc42. As shown 

in Figure 3, the GAP domain of Arhgap12 stimulated GTP hydrolysis by Rac1 but not 

by RhoA. A lower activity towards Cdc42 was also detected. Indeed, other GAP 

proteins have been found to exert GAP activity in vitro towards both Rac1 and Cdc42, 

probably as a result of their similarity (Cicchetti et al. 1995). Nevertheless, since the 

activity of Arhgap12 resulted to be substantially higher on Rac1, we concluded that 

Arhgap12 is a GTPase activating protein for Rac1 in vitro. 

To verify if other Rac1-GAPs are transcriptionally regulated by HGF, we extracted 

microarray expression data for ten Rac1-GAPs from a time-course HGF stimulation 

experiment performed on MLP-29 cells (our unpublished results). Only two other Rac1 

GAPs (Arhgap5 and Arhgap29) displayed a moderate transcriptional suppression by 

HGF (2- to 4-fold), confirming that Arhgap12 suppression by HGF is selective 

(supplementary Figure 4).  

 

Arhgap12 affects cell scattering, adhesion and invasiveness. 

To study the involvement of Arhgap12 in the response of epithelial cells to HGF, we 

constructed a lentiviral vector for overexpression of Arhgap12 fused with GFP at its C-

terminal (see Materials and Methods). For stable gene downregulation by RNA 

interference, the pLPG-Arhagap12-sh vector was constructed using a lentiviral 

backbone. As a control, cells were transduced either by the empty lentiviral vector, or 

by a lentiviral vector expressing GFP alone or a scrambled shRNA. The vectors were 

used to infect MDCK canine kidney cells, a well-characterized model for studying the 

role of small GTPases and their regulators in HGF-driven invasive growth. In particular, 

Rac1 was found to be essential for key steps in the scattering response of MDCK cells 

to HGF, namely membrane ruffling, cytoskeleton remodeling, lamellipodia formation 

and colony spreading  (Ridley et al. 1995; Royal et al. 2000).  
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Western blot analysis with anti-Arhgap12 antibody confirmed the efficacy of both 

vectors (Figure 4A). The fusion protein of 120kDa, corresponding to the sum of the 

molecular masses of Arhgap12 and GFP was highly abundant in Arhgap12-GFP 

transduced cells, while the endogenous protein of 97 kDa was robustly downregulated 

in shRNA-transduced cells, and expressed in transduced cells at slightly -but not 

significantly- higher levels, as quantified on three independent blots (Scramble/WT = 

1.12+/-0.08; Arhgap12-GFP/WT=1.25+/-0.13). Flow cytometric analysis showed that 

almost all Arhgap12-GFP transduced cells expressed the recombinant protein at 

medium-to-high levels (not shown). Fluorescence microscopy on Arhgap12-GFP 

transduced cells showed that the fusion protein is recruited to the plasma membrane in 

various cell types (Figure 4), consistently with the presence of the PH domain and with 

its recent isolation as a novel component of adherens junctions (Matsuda et al. 2008). 

The biological properties of Arhgap12 over- or under-expressing cells were assessed in 

a number of biological assays, both in the presence or absence of HGF, to highlight a 

possible functional role of this protein in the various aspects of invasive growth. The 

major read–out of HGF activity is the induction of cell scattering, for which we 

observed a reduced response to HGF of Arhgap12-GFP expressing cells, mirrored by an 

increased response in shRNA-transduced cells (Figure 5A). Time-lapse recording 

allowed us to identify the kinetic of cells scattering: while Arhgap12 overexpressing 

cells initiated scattering later than controls, cells in which Arhgap12 was functionally 

ablated were more prompt and efficient in the response (Supplementary Figure 5). We 

reasoned that Arhgap12 downregulation by HGF may play a role in the early phases of 

the HGF response, and exploited an assay of cell adhesion to fibronectin treating the 

cells with HGF for 1 hour to obtain a short-term quantitative readout of the invasive 

growth program (Figure 5B). Indeed, cell adhesion was strongly impaired in the 

Arhgap12-overexpressing cells. Conversely, depletion of Arhgap12 enhanced cell 
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adhesion to fibronectin. The effect of Arhgap12 up- or downregulation was similar in 

HGF-treated and untreated cells, likely due to a basal Rac1 activity in MDCK cells 

cultivated in 10% serum, a condition known to promote cell-matrix adhesion via Rac1 

(Guo et al. 2006). 

We addressed later phases of the invasive growth program using an assay for cell 

invasiveness through matrigel-coated transwells. In such assays cell invasion was 

achieved upon addition of HGF for 24 hours. We found that in HGF-treated cells, 

invasion was stimulated to a similar extent both in wild-type and Arhgap12-silenced 

cells. Conversely, Arhgap12 overexpression inhibited the ability of cells to invade in 

response to HGF (Figure 5C). The lack of effect of shRNA-mediated Arhgap12 

silencing in this assay is probably due to the fact that already at six hours of HGF 

stimulation the endogenous Arhgap12 protein strongly suppressed also in wild-type 

cells (Fig. 2D). It is therefore likely that the potential proinvasive effect of Arhgap12 

artificial downregulation has a very limiter temporal window, i.e. the very first hours. 

However, before six hours, the quicker Rac1 activation in the shRNA-transduced cells 

is probably counteracted by the still undegraded matrix barrier. 

Finally, we found that Arhgap12 overexpression or silencing did not grossly impair the 

proliferative response to HGF (not shown), which ruled out the possibility of a non-

specific effect due to altered cell viability. Arhgap12 localization and its effects on cell 

adhesion, scattering and migration were confirmed in additional normal and neoplastic 

cell lines, namely MLP-29, HeLa, DU145 and MCF10A (Supplementary Figure 6).  

The sum of these results demonstrates that suppression of Arhgap12 transcript and 

protein by HGF plays a relevant role in the invasive-growth program elicited by HGF.  
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Discussion 

By a novel gene trapping technique, we identified Arhgap12 as a specific transcriptional 

target of HGF in normal and cancer cells. Arhgap12 is selectively suppressed at 

transcriptional level by HGF but not by serum, the latter promoting a robust 

transcriptional response leading to cell proliferation but not to invasive growth (Iyer et 

al. 1999; Medico et al. 2001). Little was known about Arhgap12, other than its genomic 

structure and ubiquitous expression (Zhang et al. 2002). Arhgap12 is part of a subfamily 

including two other members, ArhGAP9 and 15 (Furukawa et al. 2001; Seoh et al. 

2003). Protein sequence analysis shows that Arhgap12 encodes a GAP domain and 

three other functional motifs: (i) a PH domain, known to be involved in protein-lipid 

interaction, (ii) two WW domains and (iii) one SH3 domain potentially involved in 

protein-protein interactions. We show here that, in vitro, Arhgap12 inactivates Rac1 by 

increasing the rate of GTP hydrolysis. In addition, we found that when constitutively 

expressed, Arhgap12 negatively regulates cell adhesion, scattering and invasion, all 

processes requiring Rac1 activity (Hall 1998; Guo et al. 2006). RNA interference-

mediated Arhgap12 suppression confirmed that it effectively inhibits Rac1-mediated 

processes also when endogenously expressed. Downregulation of Arhgap12 by HGF is 

rather selective, as nine other Rac1 GAPs surveyed by our microarray analysis either 

did not respond at all or were only slightly affected (Arhgap5 and Arhgap29). It is 

known that Rac1 promotes specific cellular functions essential for the invasive growth 

program, such as actin cytoskeleton reorganization and polymerization (Bosse et al. 

2007), interaction with the extracellular matrix via focal adhesion complexes (Guo et al. 

2006), and random and directional cell migration (Pankov et al. 2005; Keely et al. 

1997). Rac1 also promotes the assembly of adherens junctions, specialized sites of cell-

cell contact (Braga et al. 1997). Indeed, increased cell-cell adhesion driven by the 

constitutively active V12Rac mutant was found to inhibit HGF-induced cell scattering 
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(Hordijk et al. 1997), as well as motility and invasiveness of Ras-transformed MDCK 

cells (Sander et al. 1998). Thus, in epithelial cells, HGF-driven activation of Rac1 has to 

be tightly controlled in time and space to properly balance two potentially opposing 

processes, migration and cell-cell adhesion. Several factors have been found to 

influence the balance between adhesive and migratory responses to Rac1, such as 

composition of the extracellular matrix (Sander et al. 1998), activation of other Rho 

family proteins (Sander et al. 1999), and subcellular localization. In the migrating cell, 

PI3K-dependent activation of Rac1 takes place at the leading edge, where it induces 

membrane extensions, in part, through the WAVE–Arp2/3 complex (Takenawa and 

Miki 2001). Recruitment of Rac1 to the membrane and increased cell migration are also 

stimulated by elevated membrane phosphatidylserine content (Finkielstein et al. 2006). 

In this view, the PH, WW and SH3 domains of Arhgap12 can actually mediate its 

recruitment at specific membrane sites and signaling complexes, so that the overall 

result of its activity is inhibition of Rac1 in restricted areas of the cell membrane critical 

for cell-matrix adhesion, migration and invasion. Interestingly, Arhgap-12 

overexpression, while inhibiting cell-matrix adhesion and scattering, did not reduce cell-

cell adhesion (Figures 4-5). It has indeed been recently demonstrated that Arhgap12 is a 

component of adherens junctions (Matsuda et al. 2008). It was known that HGF 

regulates cell migration by activating Rac1 via a rapid cascade of biochemical events 

(Itoh et al. 2002; Kurokawa et al. 2004). Here we show that the long-term (and long 

lasting) invasive growth response to HGF is mediated by Rac1 activation via 

transcriptional suppression of Arhgap12. 

 



 12 

Materials and Methods 

 

Reagents, antibodies and Cell Cultures 

Cell lines were cultured with Dulbecco’s Modified Eagle Medium (DMEM; Gibco) 

medium supplemented with 10% FBS (Sigma) in a humidified atmosphere of 5% CO2. 

Stimulations were performed with recombinant HGF (40 Units/ml; (Naldini et al. 

1995)). Human plasmatic FN was from Sigma. GFP antibody was from Roche (Roche 

anti-GFP 1814460). Actin antibody was from Santa Cruz. Puromycin and MN were 

from Sigma. 

 

Cell trapping and pharmacological selections. 

pP-TRACT was transfected using the Lipofectin Reagent (Gibco BRL, Grand Island, 

NY), according to the manufacturer's protocol. pP-TRACT was linearized before 

transfection with DraI restriction enzyme to avoid plasmid breaking within the trap 

cassette, and extensive intracellular replication of the trap through the SV40ori. L-

TRACTS and R-TRACTS viruses were used at a low multiplicity: in each experiment, 

107 cells were infected with 106 CFU of L/R-TRACT to avoid multiple integrations in 

the same cell. For trap selection, cells were treated with different doses of puromycin 

(Sigma, St. Louis, MO) going from 1µg/ml to 20µg/ml for 2-4 days. MN (Sigma, St. 

Louis, MO) was used at a concentration of 10mM for at least 4 days. Stimulation with 

recombinant HGF was combined with puromycin treatment for the selection of traps in 

HGF-induced genes, and with MN treatment for the selection of traps in HGF-

suppressed genes. 
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Flow cytometry and biological assays 

For flow cytometry, cells were detached by trypsinization, diluted in cold DMEM 

(Gibco) with 10% FBS, carefully mixed to disrupt cell aggregates and allowed to 

sediment for 1 min to eliminate residual clumps. Flow cytometry was conducted on 

Becton Dickinson (San Jose, CA) FACS Calibur. To improve sensitivity in PGN 

detection, we carried out analyses by comparing for each cell the fluorescence in the 

green channel (FL1) with fluorescence in the red channel (FL3), which indicated 

individual autofluorescence. For quantitative analysis of PGN expression, average red 

fluorescence was subtracted from average green fluorescence to obtain an estimate of 

specific PGN fluorescence. The same approach has been used to quantify Arhgap12-

GFP expression in infected cell lines. For scatter assay, MDCK cells expressing 

Arhgap12 at different levels were cultured in 10% FBS allowing them to reach 40% 

confluence forming packed colonies, and subsequently treated with HGF for various 

times and photographed every 30 minutes under transmitted light with a Pathway 

system (BD Biosciences). For time-lapse microscopy, phase contrast micrographs were 

taken every 15 minutes in a Multi-Dimensional Workstation (Leica). For invasion 

assay, 105 cells were seeded on the upper side of a Transwell chamber on a porous 

polycarbonate membrane (8.0 µm pore size, Falcon BD) coated with artificial basement 

membrane (Matrigel, 20µg per filter; Becton Dickinson Labware); the lower chamber of 

the Transwell was filled with DMEM containing 2% FBS in the absence or presence of 

HGF. After 24h of incubation, cells attached on the upper side of the filter were 

mechanically removed while cells that migrated to the lower side of the filter were fixed 

with glutheraldeyde 11%, stained with crystal violet, photographed (10 microscopic 

fields/sample) and quantified using the Metamorph software (Universal Imaging, USA). 

For cell adhesion assays, Microtiter plates (96-well; Nunc, Naperville, IL) were coated 
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with FN (2.5–20 µg/ml) in PBS. Proteins were allowed to bind overnight at 4°C before 

washing the wells with PBS and blocking for 2 h at 37°C with 2% heat-denatured BSA 

in PBS. Cells pretreated or not with HGF (for 1 hour) were harvested and added to the 

wells (104 cells/0.1 ml). After incubation for 45 min at 37°C, the wells were gently 

washed with PBS. Adherent cells were fixed in 11% glutaraldehyde in PBS, stained 

with 0.1% crystal violet in 20% methanol, photographed and quantified using the 

Metamorph software (Universal Imaging, USA). Data presented are the means ± SD of 

quadruplicate wells from six experiments. For fluorescence microscopy, cells were 

plated onto 24-well plates (Costar) containing 1.4-cm2 glass coverslips. After 

incubation, cells were fixed in a freshly prepared solution of 3% paraformaldehyde and 

2% sucrose in PBS (pH 7.6) for 5 min at room temperature. Images were captured by a 

Multi-Dimensional Workstation (Leica). 

 

RNA extraction and Real-Time PCR 

RNA was extracted using Trizol Kit (Ambion), according to the manufacturer’s 

protocol. Quantitative Real-Time PCR with Sybr Green assay (Applera) was used to 

measure the relative amount of the cDNA of interest respect to the amount of an 

housekeeping gene (PGK) in different samples (unstimulated and stimulated cells). 

Human and mouse primers were designed with Primer Express software (Applied 

Biosystems). and are: hARHGAP12: sense 5’-

TGGTTTGGATATTGATGGGATATACA-3’;  

antisense 5’-CATTCAAGTCCAATTTCTCATCATG-3’;  

mARHGAP12: sense 5’-TCGGTCAGAGTGGGAATTGC-3’;  

antisense 5’-TATTGGTTCTTGCAGCCGC-3’;  

hPGK: sense 5’-CTTATGAGCCACCTAGGCCG-3’;  

antisense 5’-CATCCTTGCCCAGCAGAGAT-3’;  
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mPGK: sense 5’-CAGATTGTTTGGAATGGTCCTG-3’;  

antisense 5’-CCCCTAGAAGTGGCTTTCACC-3’.  

PCR reactions were carried out using a 7900HT Sequence Detection System (Applera), 

according to standard protocols. 

 

Construction and Expression of the Arhgap12-GFP Fusion and of Arhgap12 shRNA in 

lentiviral vectors. 

We engineered a lentiviral vector for the expression of GFP fusion proteins driven by 

the PGK promoter. To this aim, we replaced the GFP coding sequence in the lentiviral 

plasmid pRRLsin.PPT.hPGK.PGK-GFP.Wpre (Follenzi et al. 2000) with a new GFP 

coding sequence lacking the translation start ATG and preceded by a 3x (Gly-Gly-Gly-

Gly-Ser) linker and a multicloning site. We named the plasmid pLP-X-GFP, which 

stands for Lentiviral vector, PGK promoter, X (ORF)-GFP. To generate the pLP-

Arhgap12-GFP plasmid, the mouse Arhgap12 coding sequence was obtained by RT-

PCR from MLP-29 cells using the sense primer 5'-

CCATCGATATGGCCGAGAGAAGTGGAAA-3' (containing the ClaI site), and the 

antisense primer 5'-CTAGCTAGCTCCAAAGACAGTGCTTAATTCC-3' (designed to 

amplify the Arhgap12 coding sequence excluding the 3' termination codon and 

containing the restriction site NheI) and ligated into the pLP-X-GFP multicloning site, 

in frame with GFP. The construct was sequence-verified. Two control lentiviruses were 

also used, one expressing GFP and another without any transgene (empty). The 

Arhgap12-specific shRNA vector was generated using the following oligonucleotides 

containing the specific 19-mer targeting sequence (in bold); forward primer: 5’-

GATCCCCGAACAGAACTGCTAATTCATTCAAGAGATGAATTAGCAGTTCTGT

TCTTTTTGGAAA-3’ and reverse primer: 5’-

AGCTTTTCCAAAAAGAACAGAACTGCTAATTCATCTCTTGAATGAATTAGCA
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GTTCTGTTCGGG-3’. The oligonucleotides were annealed by boiling 1min at 80°C 

and slow cooling at RT, and ligated in pSuper (Brummelkamp et al. 2002), downstream 

from the H1 promoter. Lentiviral Arhgap12 shRNA was generated by subcloning the 

H1-RNA-promoter-Arhgap12 shRNA cassette from pSUPER in EcoRV-XhoI sites of 

the above-mentioned vector pCCL.sin.PPT.hPGK.GFP.Wpre. The construct was named 

pLPG-Arhagap12-sh (Lentiviral PGK-GFP-H1-Arhagap12 short hairpin). The construct 

was sequence-verified, and a scrambled lentiviral shRNA vector was generated as a 

control. Vector stocks were produced by transient transfection of 293T cells and 

purified by ultra-centrifugation as described (Dull et al. 1998). Transduction 

experiments were performed by adding a 1:2 dilution of the concentrated virus onto 

3X104 cells in 96-well plates (Costar) in the presence of polybrene (8 µg/ml). 

Transduction efficiency was checked by flow cytometry for GFP expression.  

 

Production of Arhgap12 antibody and Western Blot 

A sequence from base 220 to base 789 of the Arhgap12 mRNA (GenBank ID: 

NM_018287) was PCR-amplified using sense primer: 5’-

CGGGATCCACGCGCAAAGCTCTCAT-3’ and antisense primer: 5’-

CGGAATTCTTACGGGCTCCCAGGAA-3’. The PCR fragment was cloned in pGEX-

4T-1, a vector for bacterial expression of Glutathione-S-Transferase (GST)-fusion 

proteins (Amersham Biosciences). Rabbit polyclonal antibodies against the (GST)-

fusion protein, purified from BL21 bacterial strain as described (Grisendi et al. 2001), 

were produced by Eurogentec (Belgium). For western blot, cells were washed twice 

with cold PBS, lysed with a buffer containing 50 mmol/L HEPES (pH 7.4), 5 mmol/L 

EDTA, 2 mmol/L EGTA, 150 mmol/L NaCl, 10% glycerol, and 1% Triton X-100, in 

the presence of protease and phosphatase inhibitors. The extracts were clarified at 

12,000 rpm for 15 minutes. Proteins were quantified with the Bicinchoninic Acid 

http://mcb.asm.org/cgi/external_ref?access_num=NM-010929&link_type=GEN
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Protein Assay Reagent kit (Pierce, Rockford, IL), resolved on SDS-PAGE and 

subsequently transferred onto Hybond-C filters (Amersham). Filters were blocked with 

10% BSA for 1 h at 45°C and probed with antibodies diluted in TBS (Tris-buffered 

saline)-5% BSA, for 16 h at 4°C. After extensive washing, the blots were stained with 

peroxidase-conjugated secondary antiserum followed by enhanced chemiluminescence 

reaction (ECL; Amersham). 

 

In vitro GAP assay 

The GAP domain of Arhgap12 (residues 582-838), was amplified by PCR using the 

sense primer 5’-GGAATTCCCAGATTCACCAGGGGTAG-3’ and the antisense 

primer 5’-CCGCTCGAGTCAACGTCCAAAGACA-3’. The PCR fragment was cloned 

in the above-mentioned pGEX-4T-1 vector, and the (GST)-fusion protein purified as 

above (see Supplementary Figure 3). The GAP assay was performed according to 

standard procedures (Ridley et al. 1993). Briefly, 5µg of recombinant Rho, Rac and 

Cdc42 (200 nmoles) were preloaded with [γ-32P]GTP (5 µCi, 5000 Ci/mmol; Amersham 

Biosciences). The [γ-32P]GTP-loaded GTPases were incubated with 17.8 or 178 nmoles 

of either GST-GAP domain or GST, aliquots were taken at different time points and 

subjected to filter binding assay. The reactions mixture were filtered through 

nitrocellulose filters (Millipore), and washed with 5 ml of ice-cold Washing Buffer. The 

radioactivity retained on the filters was then quantified by scintillation counting. 
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Titles and legends to figures 

 

Figure 1. Flowchart representation of the procedure for selecting cells carrying 

traps in in HGF-induced or HGF-suppressed genes. After infection, cells are 

exposed to a low dose of puromycin for 3 days, to obtain populations of cells carrying 

traps in genes expressed at various levels. Several hundred thousand integrations were 

generated for the screening. To isolate traps in genes induced or suppressed by HGF, the 

populations were sequentially stimulated with HGF, in combination with puromycin 

treatment for selection of induced genes, or MN treatment for selection of suppressed 

genes. The treatment cycles were repeated once to improve the selection efficiency. 

 

Figure 2. Identification and validation of Arhgap12 as a transcriptional target of 

HGF in murine and human cell lines. (A) Specific response of the SH24 trap clone to 

HGF. The histogram shows the changes in PGN fluorescence induced by HGF and 

serum (as percent of green fluorescence respect to untreated cells) on the SH24 trapped 

clone measured by FACS. The error bars report standard deviations of triplicates. (B) 

Real-Time PCR validation of Arhgap12 transcriptional regulation by HGF in MLP-29 

cells. Changes of Arhgap12 transcript levels have been measured at different times of 

stimulation with HGF, as indicated, or with serum (FBS). Arhgap12 levels are 

normalized against the PGK housekeeping gene, measured on the same samples. The 

error bars report standard deviations of triplicates. (C) Real-Time PCR validation of 

Arhgap12 transcriptional regulation by HGF in human cancer cell lines. Changes of 

human ARHGAP12 transcript levels, normalized against the PGK housekeeping gene, 

have been measured at different times of stimulation of MDA-MB-435 (with or without 

B4 Integrin), A549, DU145 and ARO cells with HGF, as indicated. The error bars 

report standard deviations of triplicates. (D) Western blot analysis of Arhgap12 
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expression in MLP-29 cells, before and after treatment with HGF or with FBS at 

various times, as indicated. Actin staining is also reported as a control of total loaded 

proteins. 

 

Figure 3. Arhgap12 has GAP activity towards Rac1 in vitro. Time-dependent kinetic 

of the GAP activity of the Arhgap12 GAP domain (GST-Arhgap12) on RhoA (A), Rac1 

(B) and Cdc42 (C), as indicated. Rho, Rac1 and Cdc42 (200 nmoles) were loaded with 

[γ-32P]-GTP and incubated for 5 or 15 minutes with either GST or GST-Arhgap12. The 

percentage of the GTP-bound fraction of each GTPase in the presence of GST alone or 

GST-Arhgap12 is shown on the y axis of the graph. The figure shows the means and 

standard deviations of three independent experiments. 

 

Figure 4. Functional characterization of Arhgap12 by gain- and loss-of-function in 

epithelial cells. (A) Western Blot analysis with an anti-Arhgap12 antibody of MDCK 

cells transduced with lentiviral vectors, either empty (mock), or encoding a scrambled 

shRNA, the Arhgap12-shRNA or the Arhgap12-GFP fusion, as indicated. The top and 

bottom arrows indicate the Arhgap12-GFP fusion and the wild type Arhgap12 (120 and 

97 kDa, respectively). (B) Detection of Arhgap12-GFP in infected MDCK cells by 

fluorescence microscopy, showing membrane localization. The white arrows indicate 

membrane regions in which Arhgap12-GFP is particularly concentrated  

 

Figure 5. Arhgap12 negatively regulates HGF-driven cell scattering, adhesion and 

invasion. (A) Arhgap12 affects cell scattering. Micrographs of MDCK cells either 

transduced with Arhgap12-GFP, or with Arhgap12 shRNA or with scrambled shRNA 

(CTRL), taken at 0, 5 and 15 hours of stimulation with HGF or with control medium 

(NS), as indicated. (B) Adhesion assay on fibronectin of MDCK cells either transduced 



 25 

with Arhgap12-GFP, or with Arhgap12 shRNA or with scrambled shRNA (CTRL), 

pretreated for 1 hour with HGF or control medium (NS). The figure shows the means 

and standard deviations of three independent experiments. Arbitrary Units indicate the 

surface occupied by cells as quantified using the Metamorph software. (C) Invasion 

assay on matrigel-coated Transwells, performed on MDCK cells either transduced with 

Arhgap12-GFP, or with Arhgap12 shRNA or with scrambled shRNA (CTRL) in the 

absence (NS) or presence of HGF for 24 hours, as indicated. The figure shows the 

means and standard deviations of three independent experiments. Arbitrary Units 

indicate the surface occupied by cells as quantified using the Metamorph software.  
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