41 research outputs found

    Reconstruction of the marine carbonate system at the Western Tropical Atlantic: trends and variabilities from 20 years of the PIRATA program

    Get PDF
    The Western Tropical Atlantic Ocean (WTAO) is crucial for understanding CO2 dynamics due to inputs from major rivers (Amazon and Orinoco), substantial rainfall from the Intertropical Convergence Zone (ITCZ), and CO2-rich waters from equatorial upwelling. This study, spanning 1998 to 2018, utilized sea surface temperature (SST) and sea surface salinity (SSS) data from the PIRATA buoy at 8°N 38°W to reconstruct the surface marine carbonate system. Empirical models derived total alkalinity (TA) and dissolved inorganic carbon (DIC) from SSS, with subsequent estimation of pH and fCO2 from TA, DIC, SSS, and SST data. Linear trend analysis showed statistically significant temporal trends: DIC and fCO2 increased at a rate of 0.7 µmol kg-1 year-1 and 1.539 µatm year-1, respectively, and pH decreased at a rate of -0.001 pH units year-1, although DIC did not show any trend after data was de-seasoned. Rainfall analysis revealed distinct dry (July to December) and wet (January to June) seasons, aligning with lower and higher freshwater influence on the ocean surface, respectively. TA, DIC, and pH correlated positively with SSS, exhibiting higher values during the dry season and lower values during the wet season. Conversely, fCO2 correlated positively with SST, showcasing higher values during the wet season and lower values during the dry season. This emphasizes the influential roles of SSS and SST variability in CO2 solubility within the region. Finally, we have analysed the difference between TA and DIC (TA-DIC) as an indicator for ocean acidification and found a decreasing trend of -0.93 ± 0.02 μmol kg-1 year-1, reinforcing the reduction in the surface ocean buffering capacity in this area. All trends found for the region agree with data from other stations in the tropical and subtropical Atlantic Ocean. In conclusion, the use of empirical models proposed in this study has proven to help filling the gaps in marine carbonate system data in the Western Tropical Atlantic

    Sea-air CO2 fluxes along the Brazilian continental margin

    Get PDF
    Measurements of the marine carbonate system on tropical and subtropical continental margins are poorlydistributed in space and time, with many uncertainties persisting regarding the role of carbon exchanges at theocean-atmosphere interface in these areas. To calculate sea-to-air CO2 fluxes in Marine Ecoregions along theBrazilian continental margin (4°N to 34°S), we used data from the Surface Ocean CO2 Atlas (SOCAT v2020),collected up to 400 km from the coast, at the surface (5 m), between 1991 and 2018, with the aim of investigatingthe role of ecoregions as potential sinks or sources of atmospheric CO2. The temperature and salinity of seawaterpresented variability in the north-south direction mainly because of the broad latitudinal range, reflecting typicalpatterns of tropical (T = 27.4°C ±1.49; S = 36.4 ±1.91) and subtropical waters (T = 22.8°C ±3.41; S = 35 ±2.91), inaddition to the greater or lesser influence of river inputs in each ecoregion. The pCO2 values in the surface watersvaried from 121.81 (Amazon) to 478.92 µatm (Eastern), differing significantly between ecoregions and showingan expected decadal increasing trend, both in the atmosphere and in the seawater. The calculated values of CO2fluxes showed non-homogeneous spatio-temporal variations, from -24.37 mmol m-2 d-1 (Rio Grande) to 9.87 mmolm- 2 d-1 (Southeastern). Throughout the analyzed time series, we observed that the Northeast, Amazon and Easternecoregions acted predominantly as sources of CO2 and the Southeastern ecoregions and, mainly, Rio Grande,acted predominantly as sinks of atmospheric CO

    The Ocean and Cryosphere in a Changing Climate in Latin America: Knowledge Gaps and the Urgency to Translate Science Into Action

    Get PDF
    Climate Change hazards to social-ecological systems are well-documented and the time to act is now. The IPCC-SROCC used the best available scientific knowledge to identify paths for effective adaptation and mitigation of climate change impacts on the ocean and cryosphere. Despite all the evidence highlighted by SROCC and the key role of the ocean and cryosphere for climate change at all levels, Latin America (LA) faces challenges to take effective action mostly due to socio-economic vulnerability, political instability and overall technical capacities. Countries have adopted diverse actions as the information needed by policy makers has been made available, not necessarily in accessible and inclusive ways. Regional imbalance in economic development, technological level, capacity development, societal involvement, and governmental oversight have contributed to skewed geographical and technological gaps of knowledge on key ecosystems and specific areas preventing effective climate actions/solutions. We analyze the Nationally Determined Contributions (NDCs) from the region as proxies to the incorporation of IPCC recommendations. The gaps and opportunities for the uptake of ocean and climate science to political decision making is discussed as five key aspects: (i) climate assessment information and regional policies, (ii) knowledge production, (iii) knowledge accessibility, (iv) knowledge impact to policy, and (v) long term monitoring for decision making. We advocate that the uptake of SROCC findings in LA policies can be enhanced by: (a) embracing local realities and incorporating local, traditional and indigenous knowledge; (b) empowering locals to convey local knowledge to global assessments and adapt findings to local realities; (c) enhancing regional research capabilities; and (d) securing long-term sustainable ocean observations. Local and regional participation in knowledge production and provision enhances communication pathways, climate literacy and engagement which are key for effective action to be reflected in governance. Currently, the lack of accessible and inclusive information at the local level hampers the overall understanding, integration and engagement of the society to mitigate climate effects, perpetuates regional heterogeneity and threatens the efforts to reverse the course of climate change in LA. Local researchers should be empowered, encouraged, rewarded and better included in global climate-ocean scientific assessments.Fil: Muelbert, Mônica M. C.. Universidade Federal de Sao Paulo; Brasil. Universidade Federal do Rio Grande; BrasilFil: Copertino, Margareth. Universidade Federal do Rio Grande; Brasil. Rede Brasileira de Pesquisas sobre Mudanças Climáticas Globais; BrasilFil: Cotrim da Cunha, Leticia. Rede Brasileira de Pesquisas sobre Mudanças Climáticas Globais; Brasil. Universidade do Estado de Rio do Janeiro; BrasilFil: Lewis, Mirtha Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; ArgentinaFil: Polejack, Andrei. World Maritime University; Suecia. Ministério de Ciência, Tecnologia e Inovações; BrasilFil: Peña Puch, Angelina del Carmen. Universidad Autónoma de Campeche; MéxicoFil: Rivera Arriaga, Evelia. Universidad Autónoma de Campeche; Méxic

    Organization & sustainability of PIRATA network Report

    Get PDF
    A detailed report on the renewed PIRATA network, and its potential sustainability over long-term. This deliverable has been established with the contribution of the PIRATA International Scientific Steering Group and PIRATA partners

    Report on demo mission and dissemination pathways of obtained data based on different observational platforms

    Get PDF
    This document describes the deployment of instrumentation in the Eastern tropical Atlantic area and shows the preliminary data acquired

    Seamount Observatory and SAMOC Overturning, Cruise No. MSM60, January 04 - February 01, 2017, Cape Town (South Africa) - Montevideo (Uruguay)

    Get PDF
    The scientific program of the MARIA S. MERIAN MSM60 expedition was the first basin-wide section across the South Atlantic following the SAMBA/SAMOC line at 34°30'S. The scientific program consisted of full water depth sampling (up to 5300m) using the CTD/O2/lADCP rosette system. The water samples have been analysed on board for oxygen, dissolved inorganic carbon, alkalinity, salinity, CFC12, and SF6. In addition samples have been taken for later analysis of nutrients, chlorophyll structure (HPLC), POC, and nitrogen isotope analysis. The sampling and measurements where performed against highest standards defined in the GO-SHIP cruise recommendations (http://www.go-ship.org/). An Underwater Vision Profiler (UVP) was mounted on the CTD for full depth particle photography. Underway measurements included hull mounted ADCPs (75kHz and 38kHz) and high resolution (11nm) XBT probes. The data will be analysed for multiple purposes including calculation of the meridional volume, heat, and freshwater transport across the SAMBA/SAMOC line. The biogeochemical data will be compared to historical data acquired at neighbouring sections, e.g. along the WOCE/GO-SHIP A10 section (30°S) occupied by RV Meteor in 1993 as part of the WOCE program. The MSM60 expedition is a contribution to the EU H-2020 AtlantOS project

    The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product

    Get PDF
    The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2023 is an update of the previous version, GLODAPv2.2022 (Lauvset et al., 2022). The major changes are as follows: data from 23 new cruises were added. In addition, a number of changes were made to the data included in GLODAPv2.2022. GLODAPv2.2023 includes measurements from more than 1.4 million water samples from the global oceans collected on 1108 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on the systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 23 new cruises were derived by comparing those data with the data from the 1085 quality-controlled cruises in the GLODAPv2.2022 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2), chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon and Acidification Data System of NOAA National Centers for Environmental Information (NCEI), which also provides access to the merged data product. This is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/zyrq-ht66 (Lauvset et al., 2023). These bias-adjusted product files also include significant ancillary and approximated data, which were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2023 methods and provides a broad overview of the secondary quality control procedures and results
    corecore