617 research outputs found

    Jet Production at RHIC and LHC

    Full text link
    Recent results on jet production in heavy ion collisions at RHIC and the LHC are discussed, with emphasis on inclusive jet yields and semi-inclusive hadron-triggered and vector boson-triggered recoil jet yields as well as their azimuthal angular correlations. I will also discuss the constraints that these observables impose on the opacity of the medium, the flavour dependence of energy loss, the interplay of perturbative and non perturbative effects and the change of the degrees of freedom of the medium with the resolution of the probe.Comment: 8 pages, 7 figures, proceedings of Quark Matter 2017 conferenc

    An analysis of the influence of background subtraction and quenching on jet observables in heavy-ion collisions

    Full text link
    Subtraction of the large background in reconstruction is a key ingredient in jet studies in high-energy heavy-ion collisions at RHIC and the LHC. Here we address the question to which extent the most commonly used subtraction techniques are able to eliminate the effects of the background on the most commonly discussed observables at present: single inclusive jet distributions, dijet asymmetry and azimuthal distributions. We consider two different background subtraction methods, an area-based one implemented through the FastJet pack- age and a pedestal subtraction method, that resemble the ones used by the experimental collaborations at the LHC. We also analyze different ways of defining the optimal parame- ters in the second method. We use a toy model that easily allows variations of the background characteristics: average background level and fluctuations and azimuthal structure, but cross- checks are also done with a Monte Carlo simulator. Furthermore, we consider the influence of quenching using Q-PYTHIA on the dijet observables with the different background subtrac- tion methods and, additionally, we examine the missing momentum of particles. The average background level and fluctuations affect both single inclusive spectra and dijet asymmetries, although differently for different subtraction setups. A large azimuthal modulation of the background has a visible effect on the azimuthal dijet distributions. Quenching, as imple- mented in Q-PYTHIA, substantially affects the dijet asymmetry but little the azimuthal dijet distributions. Besides, the missing momentum characteristics observed in the experiment are qualitatively reproduced by Q-PYTHIA.Comment: 29 pages, 43 figures Accepted by JHE

    Dead-cone searches in heavy-ion collisions using the jet tree

    Full text link
    We explore the possibility of using the dead cone of heavy quarks as a region of the Lund plane where medium-induced gluon radiation can be isolated and characterised. The filling of the dead cone by medium-induced gluons is expected to be the result of the interplay between the minimum angle of such radiation due to transverse momentum broadening and the dead-cone angle. Since the measurement of a fully corrected Lund plane in heavy-ion collisions is currently challenging, we propose to use jet grooming techniques to identify a particular splitting in the jet tree that is both perturbative and sensitive to the dead-cone effect. To that end, we propose a new jet substructure groomer, dubbed Late-ktk_t, that selects the most collinear splitting in a QCD jet above a certain transverse momentum cutoff kt,cutk_{t,\rm{cut}}. The role of kt,cutk_{t,\rm{cut}} is to guarantee perturbative splittings, while selecting the most collinear splitting enhances the sensitivity to mass effects. As a proof of concept, we study the angular distribution of the splitting tagged by Late-ktk_t both analytically and with Monte Carlo simulations. First, we derive the logarithmic resummation structure in vacuum and demonstrate its capability to distinguish between inclusive and heavy-flavoured jets. Next, we extend the calculation for in-medium jets and show that medium-induced emissions lead to an enhancement of collinear emissions below the dead cone angle. Numerically, we demonstrate an excellent resilience of Late-ktk_t against uncorrelated thermal background, thus confirming this observable as a potential candidate to unveil medium dynamics around the dead cone regime

    Isolating perturbative QCD splittings in heavy-ion collisions

    Full text link
    We define a new strategy to scan jet substructure in heavy-ion collisions. The scope is multifold: (i) test the dominance of vacuum jet dynamics at early times, (ii) capture the transition from coherent to incoherent jet energy loss, and (iii) study elastic scatterings in the medium, which are either hard and perturbative or soft and responsible for jet thermalisation. To achieve that, we analyse the angular distribution of the hardest splitting, θhard\theta_{\rm hard}, above a transverse momentum scale, ktmink_t^{\rm min}, in high-ptp_t jets. Sufficiently high values of ktmink_t^{\rm min} target the regime in which the observable is uniquely determined by vacuum-like splittings and energy loss, leaving the jet substructure unmodified compared to proton-proton collisions. Decreasing ktmink_t^{\rm min} enhances the sensitivity to the relation between energy loss and the intra-jet structure and, in particular, to observe signatures of colour decoherence at small angles. At wider angles it also becomes sensitive to hard elastic scatterings with the medium and, therefore, the perturbative regime of medium response. Choosing ktmin0k_t^{\rm min}\approx 0 leads to order one effects of non-perturbative origin such as hadronisation and, potentially, soft scatterings responsible for jet thermalisation. We perform a comprehensive analysis of this observable with three state-of-the-art jet-quenching Monte Carlo event generators. Our study paves the way for defining jet observables in heavy-ion collisions dominated by perturbative QCD and thus calculable from first principles.Comment: 18 pages, 11 figure

    Monte Carlo for Jet Showers in the Medium

    Full text link
    The most commonly employed formalisms of radiative energy loss have been derived in the high- energy approximation. In its present form, it is reliable only for the medium modifications of inclusive particle spectra. Modifications to this formalism are expected to be important for less inclusive measurements. This is especially relevant for reconstructed jets in heavy-ion collisions, which are becoming available only recently. We present some ideas to overcome this limitation. Specifically, we show an implementation of radiative energy loss within a jet parton shower. This implementation has been done within the PYTHIA Monte Carlo event generator. We present the publicly available routine Q-PYTHIA and discuss some of the obtained physics results.Comment: 4 pages, 1 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee. Final version with minor typos correcte

    Implementation of a medium-modified parton shower algorithm

    Full text link
    We present a Monte Carlo implementation of medium-induced gluon radiation in the final-state branching process. Medium effects are introduced through an additive term in the splitting functions. We have implemented such modification within PYTHIA. We show the medium effects on the hump-backed plateau, and the transverse momentum and angular distributions with respect to the parent parton. As expected, with increasing medium densities there is an increase (decrease) of partons with small (large) momentum fraction, and angular broadening is observed. The effects on the transverse-momentum distributions are more involved, with an enhancement of low- and intermediate-pTp_T partons and a decrease at large pTp_T, which is related to energy conservation, and to the lack of momentum exchange with the medium in our approach.Comment: LaTeX, 6 pages, 2 eps figures; proceedings of the 3rd International Conference on Hard and Electromagnetic Probes in High-Energy Nuclear Collisions - Hard Probes 2008 (Illa de A Toxa, Spain, June 8th-14th 2008

    Angular-ordered parton showers with medium-modified splitting functions

    Full text link
    Modified Altarelli-Parisi splitting functions were recenty proposed to model multi-parton radiation in a dense medium and describe jet quenching, one of most striking features of heavy-ion collisions. We implement medium-modified splitting functions in the HERWIG parton shower algorithm, which satisfies the angular ordering prescription, and present a few parton-level results, such as transverse momentum, angle and energy-fraction distributions, which exhibit remarkable medium-induced effects. We also comment on the comparison with respect to the results yielded by other implementations of medium-modified splitting functions in the framework of virtuality-ordered parton cascades.Comment: 19 pages, 8 figures, 1 table. Minor changes after referee repor
    corecore