485 research outputs found
The Validity of the Super-Particle Approximation during Planetesimal Formation
The formation mechanism of planetesimals in protoplanetary discs is hotly
debated. Currently, the favoured model involves the accumulation of meter-sized
objects within a turbulent disc, followed by a phase of gravitational
instability. At best one can simulate a few million particles numerically as
opposed to the several trillion meter-sized particles expected in a real
protoplanetary disc. Therefore, single particles are often used as
super-particles to represent a distribution of many smaller particles. It is
assumed that small scale phenomena do not play a role and particle collisions
are not modeled. The super-particle approximation can only be valid in a
collisionless or strongly collisional system, however, in many recent numerical
simulations this is not the case.
In this work we present new results from numerical simulations of
planetesimal formation via gravitational instability. A scaled system is
studied that does not require the use of super-particles. We find that the
scaled particles can be used to model the initial phases of clumping if the
properties of the scaled particles are chosen such that all important
timescales in the system are equivalent to what is expected in a real
protoplanetary disc. Constraints are given for the number of particles needed
in order to achieve numerical convergence.
We compare this new method to the standard super-particle approach. We find
that the super-particle approach produces unreliable results that depend on
artifacts such as the gravitational softening in both the requirement for
gravitational collapse and the resulting clump statistics. Our results show
that short range interactions (collisions) have to be modelled properly.Comment: 10 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
Angular momentum transport and large eddy simulations in magnetorotational turbulence: the small Pm limit
Angular momentum transport in accretion discs is often believed to be due to
magnetohydrodynamic turbulence mediated by the magnetorotational instability.
Despite an abundant literature on the MRI, the parameters governing the
saturation amplitude of the turbulence are poorly understood and the existence
of an asymptotic behavior in the Ohmic diffusion regime is not clearly
established. We investigate the properties of the turbulent state in the small
magnetic Prandtl number limit. Since this is extremely computationally
expensive, we also study the relevance and range of applicability of the most
common subgrid scale models for this problem. Unstratified shearing boxes
simulations are performed both in the compressible and incompressible limits,
with a resolution up to 800 cells per disc scale height. The latter constitutes
the largest resolution ever attained for a simulation of MRI turbulence. In the
presence of a mean magnetic field threading the domain, angular momentum
transport converges to a finite value in the small Pm limit. When the mean
vertical field amplitude is such that {\beta}, the ratio between the thermal
and magnetic pressure, equals 1000, we find {\alpha}~0.032 when Pm approaches
zero. In the case of a mean toroidal field for which {\beta}=100, we find
{\alpha}~0.018 in the same limit. Both implicit LES and Chollet-Lesieur closure
model reproduces these results for the {\alpha} parameter and the power
spectra. A reduction in computational cost of a factor at least 16 (and up to
256) is achieved when using such methods. MRI turbulence operates efficiently
in the small Pm limit provided there is a mean magnetic field. Implicit LES
offers a practical and efficient mean of investigation of this regime but
should be used with care, particularly in the case of a vertical field.
Chollet-Lesieur closure model is perfectly suited for simulations done with a
spectral code.Comment: Accepted for publication in A&
Spiral-wave-driven accretion in quiescent dwarf nov{\ae}
In dwarf nov{\ae} and low-mass X-ray binaries, the tidal potential excites
spiral waves in the accretion disc. Spiral wave driven accretion may be
important in quiescent discs, where the angular momentum transport mechanism
has yet to be identified. Previous studies were limited to unrealistically high
temperatures for numerical studies or to specific regimes for analytical
studies. We perform the first numerical simulation of spiral wave driven
accretion in the cold temperature regime appropriate to quiescent discs, which
have Mach numbers > 100. We use the new GPU-accelerated finite volume code
Idefix to produce global hydrodynamics 2D simulations of the accretion discs of
dwarf nov{\ae} systems with a fine-enough spatial resolution to capture the
short scale-height of cold, quiescent discs with Mach numbers ranging from 80
to 370. Running the simulations on timescales of tens of binary orbits shows
transient angular momentum transport that decays as the disc relaxes from its
initial conditions. We find the angular momentum parameter {\alpha} drops to
values << 0.01 , too weak to drive accretion in quiescence
Non-exponential hydrodynamical growth in density-stratified thin Keplerian discs
The short time evolution of three dimensional small perturbations is studied.
Exhibiting spectral asymptotic stability, thin discs are nonetheless shown to
host intensive hydrodynamical activity in the shape of non modal growth of
initial small perturbations. Two mechanisms that lead to such behavior are
identified and studied, namely, non-resonant excitation of vertically confined
sound waves by stable planar inertia-coriolis modes that results in linear
growth with time, as well as resonant coupling of those two modes that leads to
a quadratic growth of the initial perturbations. It is further speculated that
the non modal growth can give rise to secondary strato-rotational instabilities
and thus lead to a new route to turbulence generation in thin discs
Stability analysis of secondary modes, driven by the phase space island
We present a new theoretical approach, based on the Hamiltonian formalism, to investigate the stability of islands in phase space, generated by trapping of energetic particles (EPs) in plasma waves in a tokamak. This approach is relevant to MHD modes driven by EPs (EP-MHD) such as toroidal Alfvén eigenmodes (TAEs), EP-driven geodesic acoustic modes (EGAMs) or fishbones. A generic problem of a single isolated EP-MHD mode is equivalent to and hence can be replaced by a 2D Hamiltonian dynamics in the vicinity of the phase space island. The conventional Langmuir wave/bump-on-tail problem is then used as a representative reduced model to describe the dynamics of the initial EP-MHD. Solving the Fokker-Planck equation in the presence of pitch angle scattering, velocity space diffusion and drag and retaining plasma drifts in a model, we find a 'perturbed' equilibrium, associated with these phase space islands. Its stability is then explored by addressing the Vlasov/Fokker-Planck-Poisson system. The Lagrangian of this system provides the dispersion relation of the secondary modes and allows an estimate of the mode onset. The secondary instabilities have been confirmed to be possible but under certain conditions on the primary island width and in a certain range of mode numbers. The threshold island width, below which the mode stability is reached, is calculated. The secondary mode growth rate is found to be maximum when the associated resonant velocity approaches the boundary of the primary island. This, in turn, leads to a conclusion that the onset of the secondary mode can be prevented provided the primary wave number is the lowest available
The angular momentum transport by standard MRI in quasi-Kepler cylindric Taylor-Couette flows
The instability of a quasi-Kepler flow in dissipative Taylor-Couette systems
under the presence of an homogeneous axial magnetic field is considered with
focus to the excitation of nonaxisymmetric modes and the resulting angular
momentum transport. The excitation of nonaxisymmetric modes requires higher
rotation rates than the excitation of the axisymmetric mode and this the more
the higher the azimuthal mode number m. We find that the weak-field branch in
the instability map of the nonaxisymmetric modes has always a positive slope
(in opposition to the axisymmetric modes) so that for given magnetic field the
modes with m>0 always have an upper limit of the supercritical Reynolds number.
In order to excite a nonaxisymmetric mode at 1 AU in a Kepler disk a minimum
field strength of about 1 Gauss is necessary. For weaker magnetic field the
nonaxisymmetric modes decay. The angular momentum transport of the
nonaxisymmetric modes is always positive and depends linearly on the Lundquist
number of the background field. The molecular viscosity and the basic rotation
rate do not influence the related {\alpha}-parameter. We did not find any
indication that the MRI decays for small magnetic Prandtl number as found by
use of shearing-box codes. At 1 AU in a Kepler disk and a field strength of
about 1 Gauss the {\alpha} proves to be (only) of order 0.005
Rossby Wave Instability and three-dimensional vortices in accretion disks
Context. The formation of vortices in accretion disks is of high interest in
various astrophysical contexts, in particular for planet formation or in the
disks of compact objects. But despite numerous attempts it has thus far not
been possible to produce strong vortices in fully three-dimensional simulations
of disks. Aims. The aim of this paper is to present the first 3D simulation of
a strong vortex, established across the vertically stratified structure of a
disk by the Rossby Wave Instability. Methods. Using the Versatile Advection
Code (VAC), we set up a fully 3D cylindrical stratified disk potentially prone
to the Rossby Wave Instability. Results. The simulation confirms the basic
expectations obtained from previous 2D analytic and numerical works. The
simulation exhibits a strong vortex that grows rapidly and saturates at a
finite amplitude. On the other hand the third dimension shows unexpected
additional behaviours that could be of strong importance in the astrophysical
roles that such vortices can play.Comment: Accepted by Astronomy and Astrophysic
The plasma-wall transition with collisions and an oblique magnetic field: reversal of potential drops at grazing incidences
International audienceThe plasma-wall transition is studied by using 1d3V particle-in-cell (PIC) simulations in the case of a one dimensional plasma bounded by two absorbing walls separated by 200 Debye lengths (λ d). A constant and oblique magnetic field is applied to the system, with an amplitude such that r < λ d < R, where r and R are the electron and ion Larmor radius respectively. Collisions with neutrals are taken into account and modelled by an energy conservative operator, which randomly reorients ion and electron velocities. The plasma-wall transition (PWT) is shown to depend on both the angle of incidence of the magnetic field with respect to the wall θ, and on the ion mean-free-path to Larmor radius ratio, λ ci /R. In the very low collisionality regime (λ ci R) and for a large angle of incidence, the PWT consists in the classical tri-layer structure (Debye sheath / Chodura sheath / Pre-sheath) from the wall towards the center of the plasma. The drops of potential within the different regions are well consistent with already published models. However, when sin θ ≤ R/λ ci or with the ordering λ ci < R , collisions can not be neglected, leading to the disappearance of the Chodura sheath. In these case, a collisional model yields analytic expressions for the potential drop in the quasi-neutral region, and explains, in qualitative and quantitative agreement with the simulation results, its reversal below a critical angle derived in the paper, a regime possibly met in the SOL of tokamaks. It is further shown that the potential drop in the Debye sheath slightly varies with the collision-ality for λ ci R. However, it tends to decrease with λ ci in the high collisionality regime, until the Debye sheath finally vanishes
Effects of agonists of peroxisome proliferator-activated receptor γ on proteoglycan degradation and matrix metalloproteinase production in rat cartilage in vitro
AbstractObjective To examine the effects of agonists of peroxisome proliferator-activated receptor (PPAR) γ on proteoglycan degradation induced by interleukin (IL)-1β or tumor necrosis factor (TNF)α in cartilage in vitro.Design Proteoglycan degradation was measured as release of radioactivity from rat cartilage explants previously labeled with 35SO2−4. Western blots were used to examine tissue levels of aggrecan neoepitopes NITEGE and VDIPEN, generated by aggrecanases and matrix metalloproteinases (MMP), respectively. Production of MMP-2, -3 and -9 by cultured rat chondrocytes was measured by zymography and by fluorimetric assay.Results IL-1β-induced proteoglycan degradation was likely due to aggrecanase, since it was associated with a strong increase of NITEGE signal. MMP-dependent VDIPEN signal increased only after further incubation with pro-MMP activator APMA. PPAR agonists 15d-PGJ2 and GI262570 (10μM) inhibited IL-1β- and TNFα-induced proteoglycan degradation measured both before and after addition of APMA. The agonists also inhibited cytokine-induced MMP production by isolated chondrocytes.Conclusion This study shows that PPARγ agonists inhibit cytokine-induced proteoglycan degradation mediated by both aggrecanase and MMP. This effect is associated with inhibition of production of MMP-3 and -9. These results support the interest for PPARγ agonists as candidate inhibitors of pathological cartilage degradation. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved
- …