229 research outputs found

    Dielectronic recombination data for astrophysical applications: Plasma rate-coefficients for Fe^q+ (q=7-10, 13-22) and Ni^25+ ions from storage-ring experiments

    Get PDF
    This review summarizes the present status of an ongoing experimental effort to provide reliable rate coefficients for dielectronic recombination of highly charged iron ions for the modeling of astrophysical and other plasmas. The experimental work has been carried out over more than a decade at the heavy-ion storage-ring TSR of the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. The experimental and data reduction procedures are outlined. The role of previously disregarded processes such as fine-structure core excitations and trielectronic recombination is highlighted. Plasma rate coefficients for dielectronic recombination of Fe^q+ ions (q=7-10, 13-22) and Ni^25+ are presented graphically and in a simple parameterized form allowing for easy use in plasma modeling codes. It is concluded that storage-ring experiments are presently the only source for reliable low-temperature dielectronic recombination rate-coefficients of complex ions.Comment: submitted for publication in the International Review of Atomic and Molecular Physics, 8 figures, 3 tables, 68 reference

    Two-electron one-photon transition in Li-like Bi

    Get PDF

    Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring

    Full text link
    Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe14+^{14+} forming Fe13+^{13+} and Fe15+^{15+}, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe14+^{14+} ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe14+^{14+} is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical Review

    Storage-ring measurement of the hyperfine induced 47Ti18+(2s 2p 3P0 -> 2s2 1S0) transition rate

    Get PDF
    The hyperfine induced 2s 2p 3P0 > 2s2 1S0 transition rate AHFI in berylliumlike 47Ti18+ was measured. Resonant electron-ion recombination in a heavy-ion storage ring was employed to monitor the time dependent population of the 3P0 state. The experimental value AHFI=0.56(3)/s is almost 60% larger than theoretically predicted.Comment: 4 pages. 3 figures, 1 table, accepted for publication in Physical Review Letter

    Absolute rate coefficients for photorecombination of berylliumlike and boronlike silicon ions

    Get PDF
    We report measured rate coefficients for electron-ion recombination for Si10+ forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.Comment: 17 pages, 7 figures, 3 tables, 66 references, submitted to the J. Phys. B special issue on atomic and molecular data for astrophysicist

    Closed orbit correction in CRYRING

    Get PDF

    Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured resonance strengths and energies for dielectronic recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3 core excitations in the electron-ion collision energy range 0-45 eV. All measurements were carried out using the heavy-ion Test Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor agreement between our experimental and theoretical resonance energies and strengths. From 25 to 42 eV we find good agreement between the two for resonance energies. But in this energy range the theoretical resonance strengths are ~ 31% larger than the experimental results. This is larger than our estimated total experimental uncertainty in this energy range of +/- 26% (at a 90% confidence level). Above 42 eV the difference in the shape between the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly to the nl dependence of the detection probabilities of high Rydberg states in the experiment. We have used our measurements, supplemented by our AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is estimated to be accurate to better than +/- 29% (at a 90% confidence level) for k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted to form in photoionized plasmas, significant discrepancies are found between our experimentally-derived rate coefficient and previously published theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller than our experimental results over this temperature range

    Electron-ion recombination of Fe12+ forming Fe11+ : laboratory measurements and theoretical calculations

    Get PDF
    We have measured dielectronic recombination (DR) for Fe12 + forming Fe11 + using the heavy ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. Using our results, we have calculated a plasma rate coefficient from these data that can be used for modeling astrophysical and laboratory plasmas. For the low temperatures characteristic of photoionized plasmas, the experimentally derived rate coefficient is orders of magnitude larger than the previously recommended atomic data. The existing atomic data were also about 40% smaller than our measurements at temperatures relevant for collisionally ionized plasmas. Recent state-of-the-art theory has difficulty reproducing the detailed energy dependence of the DR spectrum. However, for the Maxwellian plasma rate coefficient, recent theoretical results agree with our measurements to within about 30% for both photoionized and collisionally ionized plasmas
    corecore