229 research outputs found
Dielectronic recombination data for astrophysical applications: Plasma rate-coefficients for Fe^q+ (q=7-10, 13-22) and Ni^25+ ions from storage-ring experiments
This review summarizes the present status of an ongoing experimental effort
to provide reliable rate coefficients for dielectronic recombination of highly
charged iron ions for the modeling of astrophysical and other plasmas. The
experimental work has been carried out over more than a decade at the heavy-ion
storage-ring TSR of the Max-Planck-Institute for Nuclear Physics in Heidelberg,
Germany. The experimental and data reduction procedures are outlined. The role
of previously disregarded processes such as fine-structure core excitations and
trielectronic recombination is highlighted. Plasma rate coefficients for
dielectronic recombination of Fe^q+ ions (q=7-10, 13-22) and Ni^25+ are
presented graphically and in a simple parameterized form allowing for easy use
in plasma modeling codes. It is concluded that storage-ring experiments are
presently the only source for reliable low-temperature dielectronic
recombination rate-coefficients of complex ions.Comment: submitted for publication in the International Review of Atomic and
Molecular Physics, 8 figures, 3 tables, 68 reference
Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring
Rate coefficients for photorecombination (PR) and cross sections for
electron-impact ionization (EII) of Fe forming Fe and
Fe, respectively, have been measured by employing the electron-ion
merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR
and EII of Fe ions in a plasma are derived from the experimental
measurements. Simple parametrizations of the experimentally derived plasma rate
coefficients are provided for use in the modeling of photoionized and
collisionally ionized plasmas. In the temperature ranges where Fe is
expected to form in such plasmas the latest theoretical rate coefficients of
Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron.
Astrophys. 466, 771 (2007)] for EII agree with the experimental results to
within the experimental uncertainties. Common features in the PR and EII
resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical
Review
Storage-ring measurement of the hyperfine induced 47Ti18+(2s 2p 3P0 -> 2s2 1S0) transition rate
The hyperfine induced 2s 2p 3P0 > 2s2 1S0 transition rate AHFI in
berylliumlike 47Ti18+ was measured. Resonant electron-ion recombination in a
heavy-ion storage ring was employed to monitor the time dependent population of
the 3P0 state. The experimental value AHFI=0.56(3)/s is almost 60% larger than
theoretically predicted.Comment: 4 pages. 3 figures, 1 table, accepted for publication in Physical
Review Letter
Absolute rate coefficients for photorecombination of berylliumlike and boronlike silicon ions
We report measured rate coefficients for electron-ion recombination for Si10+
forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were
performed using the electron-ion merged-beams technique at a heavy-ion storage
ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from
0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban
et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally
derived rate coefficients for the recombination of Si9+ and Si10+ ions in a
plasma are presented along with simple parameterizations. These rate
coefficients are useful for the modeling of the charge balance of silicon in
photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas
(Si10+ only). In the corresponding temperature ranges, the experimentally
derived rate coefficients agree with the latest corresponding theoretical
results within the experimental uncertainties.Comment: 17 pages, 7 figures, 3 tables, 66 references, submitted to the J.
Phys. B special issue on atomic and molecular data for astrophysicist
Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations
We have measured resonance strengths and energies for dielectronic
recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3
core excitations in the electron-ion collision energy range 0-45 eV. All
measurements were carried out using the heavy-ion Test Storage Ring at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also
carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the
AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor
agreement between our experimental and theoretical resonance energies and
strengths. From 25 to 42 eV we find good agreement between the two for
resonance energies. But in this energy range the theoretical resonance
strengths are ~ 31% larger than the experimental results. This is larger than
our estimated total experimental uncertainty in this energy range of +/- 26%
(at a 90% confidence level). Above 42 eV the difference in the shape between
the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly
to the nl dependence of the detection probabilities of high Rydberg states in
the experiment. We have used our measurements, supplemented by our
AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate
coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is
estimated to be accurate to better than +/- 29% (at a 90% confidence level) for
k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted
to form in photoionized plasmas, significant discrepancies are found between
our experimentally-derived rate coefficient and previously published
theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller
than our experimental results over this temperature range
Recommended from our members
Addendum: “Storage Ring Measurement of Electron Impact Ionization for Mg7+ Forming Mg8+” (2010, Apj, 712, 1166)
Experimental cross-section data are presented as online data tables for electron impact single ionization of Mg7+ forming Mg8+
Recommended from our members
Storage Ring Measurement of Electron Impact Ionization for Mg7+ Forming Mg8+
We report electron impact ionization cross section measurements for Mg7+ forming Mg8+ at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut für Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the GIPPER code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code
Electron-ion recombination of Fe12+ forming Fe11+ : laboratory measurements and theoretical calculations
We have measured dielectronic recombination (DR) for Fe12 + forming Fe11 + using the heavy ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. Using our results, we have calculated a plasma rate coefficient from these data that can be used for modeling astrophysical and laboratory plasmas. For the low temperatures characteristic of photoionized plasmas, the experimentally derived rate coefficient is orders of magnitude larger than the previously recommended atomic data. The existing atomic data were also about 40% smaller than our measurements at temperatures relevant for collisionally ionized plasmas. Recent state-of-the-art theory has difficulty reproducing the detailed energy dependence of the DR spectrum. However, for the Maxwellian plasma rate coefficient, recent theoretical results agree with our measurements to within about 30% for both photoionized and collisionally ionized plasmas
- …