6,241 research outputs found

    Red Men\u27s March

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2426/thumbnail.jp

    Supersymmetric particle mass measurement with invariant mass correlations

    Full text link
    The kinematic end-point technique for measuring the masses of supersymmetric particles in R-Parity conserving models at hadron colliders is re-examined with a focus on exploiting additional constraints arising from correlations in invariant mass observables. The use of such correlations is shown to potentially resolve the ambiguity in the interpretation of quark+lepton end-points and enable discrimination between sequential two-body and three-body lepton-producing decays. The use of these techniques is shown to improve the SUSY particle mass measurement precision for the SPS1a benchmark model by at least 20-30% compared to the conventional end-point technique.Comment: 29 pages, 23 .eps figures, JHEP3 style; v2 adds some references and small clarifications to text; v3 adds some more clarifications to the tex

    Fast Simulation of Facilitated Spin Models

    Full text link
    We show how to apply the absorbing Markov chain Monte Carlo algorithm of Novotny to simulate kinetically constrained models of glasses. We consider in detail one-spin facilitated models, such as the East model and its generalizations to arbitrary dimensions. We investigate how to maximise the efficiency of the algorithms, and show that simulation times can be improved on standard continuous time Monte Carlo by several orders of magnitude. We illustrate the method with equilibrium and aging results. These include a study of relaxation times in the East model for dimensions d=1 to d=13, which provides further evidence that the hierarchical relaxation in this model is present in all dimensions. We discuss how the method can be applied to other kinetically constrained models.Comment: 8 pages, 4 figure

    SABRE observations of Pi2 pulsations: case studies

    Get PDF

    First simultaneous observations of flux transfer events at the high-latitude magnetopause by the cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars

    Get PDF
    Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs) adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original “flux erosion events” observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978). We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR) system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic “pulsed ionospheric flow” and “poleward-moving radar auroral form” structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR observations also reveal the nature of the structured and variable polar ionosphere produced by the structured and time-varying precipitation and flow

    Invariant mass distributions in cascade decays

    Full text link
    We derive analytical expressions for the shape of the invariant mass distributions of massless Standard Model endproducts in cascade decays involving massive New Physics (NP) particles, D -> Cc -> Bbc -> Aabc, where the final NP particle A in the cascade is unobserved and where two of the particles a, b, c may be indistinguishable. Knowledge of these expressions can improve the determination of NP parameters at the LHC. The shape formulas are composite, but contain nothing more complicated than logarithms of simple expressions. We study the effects of cuts, final state radiation and detector effects on the distributions through Monte Carlo simulations, using a supersymmetric model as an example. We also consider how one can deal with the width of NP particles and with combinatorics from the misidentification of final state particles. The possible mismeasurements of NP masses through `feet' in the distributions are discussed. Finally, we demonstrate how the effects of different spin configurations can be included in the distributions.Comment: 39 pages, 14 figures (colour), JHEP clas
    corecore