1,466 research outputs found

    Measuring masses of semi-invisibly decaying particle pairs produced at hadron colliders

    Get PDF
    We introduce a variable useful for measuring masses of particles pair produced at hadron colliders, where each particle decays to one particle that is directly observable and another particle whose existence can only be inferred from missing transverse momenta. This variable is closely related to the transverse mass variable commonly used for measuring the WW mass at hadron colliders, and like the transverse mass our variable extracts masses in a reasonably model independent way. Without considering either backgrounds or measurement errors we consider how our variable would perform measuring the mass of selectrons in a mSUGRA SUSY model at the LHC

    Natural priors, CMSSM fits and LHC weather forecasts

    Get PDF
    Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter tan beta, while being constrained to postdict the central experimental value of MZ. We construct a different, new and more natural prior with a measure in mu and B (the more fundamental MSSM parameters from which tan beta and MZ are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted

    Measuring sparticle masses in non-universal string inspired models at the LHC

    Get PDF
    We demonstrate that some of the suggested five supergravity points for study at the LHC could be approximately derived from perturbative string theories or M-theory, but that charge and colour breaking minima would result. As a pilot study, we then analyse a perturbative string model with non-universal soft masses that are optimised in order to avoid global charge and colour breaking minima. By combining measurements of up to six kinematic edges from squark decay chains with data from a new kinematic variable, designed to improve slepton mass measurements, we demonstrate that a typical LHC experiment will be able to determine squark, slepton and neutralino masses with an accuracy sufficient to permit an optimised model to be distinguished from a similar standard SUGRA point. The technique thus generalizes SUSY searches at the LHC

    The dark side of mSUGRA

    Get PDF
    We study the mu<0 branch of the minimal supergravity ansatz of the minimal supersymmetric standard model. The extent to which mu<0 is disfavoured compared to mu>0 in global fits is calculated with Markov Chain Monte Carlo methods and bridge sampling. The fits include state-of-the-art two-loop MSSM contributions to the electroweak observables M_W and sin^2 theta_w^l, as well as the anomalous magnetic moment of the muon (g-2)_mu, the relic density of dark matter and other relevant indirect observables. mu<0 is only marginally disfavoured in global fits and should be considered in mSUGRA analyses. We estimate that the ratio of probabilities is P(mu0)=0.07-0.16

    Standard model and supersymmetric flavor puzzles at the CERN large hadron collider

    Get PDF
    Can the Large Hadron Collider explain the masses and mixings of the known fermions? A promising possibility is that these masses and mixings are determined by flavor symmetries that also govern new particles that will appear at the LHC. We consider well-motivated examples in supersymmetry with both gravity- and gauge-mediation. Contrary to spreading belief, new physics need not be minimally flavor violating. We build non-minimally flavor violating models that successfully explain all known lepton masses and mixings, but span a wide range in their predictions for slepton flavor violation. In natural and favorable cases, these models have metastable sleptons and are characterized by fully reconstructible events. We outline many flavor measurements that are then possible and describe their prospects for resolving both the standard model and new physics flavor puzzles at the Large Hadron Collider
    corecore