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Abstract: We demonstrate that some of the suggested five supergravity points for study

at the LHC could be approximately derived from perturbative string theories or M-theory,

but that charge and colour breaking minima would result. As a pilot study, we then

analyse a perturbative string model with non-universal soft masses that are optimised in

order to avoid global charge and colour breaking minima. By combining measurements

of up to six kinematic edges from squark decay chains with data from a new kinematic

variable, designed to improve slepton mass measurements, we demonstrate that a typical

LHC experiment will be able to determine squark, slepton and neutralino masses with

an accuracy sufficient to permit an optimised model to be distinguished from a similar

standard SUGRA point. The technique thus generalizes SUSY searches at the LHC.

Keywords: Supersymmetry Breaking, Beyond Standard Model, Supersymmetric

Standard Model, Hadronic Colliders.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42333665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/hep-ph/0007009v2
http://jhep.sissa.it/stdsearch?keywords=Supersymmetry_Breaking+Beyond_Standard_Model+Supersymmetric_Standard_Model+Hadronic_Colliders
http://jhep.sissa.it/stdsearch?keywords=Supersymmetry_Breaking+Beyond_Standard_Model+Supersymmetric_Standard_Model+Hadronic_Colliders


Contents

1. Introduction 1

2. Theory 2

2.1 Introduction 2

2.2 SUGRA point compatibility with string models 2

2.3 Optimized string model 5

3. Experimental observability 8

3.1 Method 8

3.2 Other measurements 11

3.2.1 Near, far, high and low l±q edges 11

3.2.2 Zq edge 12

3.2.3 MT2 12

3.3 Event generation and detector simulation 13

3.4 Event selection cuts 14

3.4.1 Cuts listed by observable 14

3.5 Edge resolutions 17

3.6 Reconstructing sparticle masses 23

4. Conclusions 29

1. Introduction

The purpose of this work is to extend the discussion of LHC supersymmetry (SUSY)

searches to include string models. We begin by discussing whether string models can be

used to motivate previous work on LHC SUSY searches, and then suggest a well-motivated

non-universal string model for a new pilot study. We go on to examine how the SUSY

particles can be detected and how the model can be distinguished from a similar well

studied supergravity (SUGRA) model. We reconstruct sparticle masses by looking for

kinematic edges in q̃L → χ̃0
2q → l̃±Rl∓q → χ̃0

1l
±l∓q and q̃L → χ̃0

2q → χ̃0
1Xq → χ̃0

1l
±l∓q decay

chains, and in doing so generalize the method of [1] by unifying the treatment of light and

heavy sleptons. Additionally, with a novel method based on [2], we further constrain the

χ̃0
1 and l̃R masses by studying the kinematics of events containing pair produced sleptons:

(gg/qq̄) → l̃+R l̃−R → l+χ̃0
1l

−χ̃0
1. In particular, this allows the mass difference between the

χ̃0
1 and l̃R to be determined with sufficient accuracy to permit discrimination between the

string model and the most similar standard SUGRA model. We suggest that our analysis

is likely to be applicable, not just to string motivated non-universal models, but to other

non-universal models as well.
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2. Theory

2.1 Introduction

Throughout this work we assume that the effective theory describing TeV scale physics

is the R-parity conserving minimal supersymmetric standard model (MSSM). Within this

framework, the collider phenomenology is strongly affected by the SUSY breaking terms

L =
1

2

3
∑

a=1

Maλaλ̄a −
∑

i

m2
i |φi|2 − (AijkWijk + BµH1H2 + H.c.), (2.1)

where i, j, k = QL, uc
R, dc

R, LL, H1, H2 and φa, λa are the scalar and gaugino fields of the

MSSM (see e.g. Ref. [3]). Wijk are the trilinear pieces of the MSSM superpotential, which

written in terms of superfields is

W = YELH1Ē + YDQHb
1D̄ + YUQH2Ū + µH1H2, (2.2)

where we have suppressed all gauge and family indices. YD, YE, YU denote the down

quark, charged lepton and up quark Yukawa matrices respectively.

In Eq. (2.1), a general parameterisation of possible SUSY breaking effects has been

employed1. Usually, the parameters are constrained by the condition of universality,

mi = m0, Aijk = A0, Ma = M1/2 (2.3)

deriving from simple SUGRA models. Eq. (2.3) is subject to radiative corrections and

should be imposed at the string scale MS . In the usual formulation of perturbative string

theory, this corresponds to MS ∼ 5 × 1017 GeV, but Eq. (2.3) is usually applied at the

grand unified scale MGUT ∼ 2 × 1016 GeV as an approximation. Once B and µ are

constrained by radiative electroweak symmetry breaking [5], the SUSY breaking sector is

then characterised by one sign: sgnµ, and four scalar parameters: m0, A0,M1/2, and tan β,

the ratio v2/v1 of the two MSSM Higgs vacuum expectation values (VEVs). Once these

are specified and current data are used to predict supersymmetric couplings such as the

top Yukawa coupling and gauge couplings, the sparticle spectrum and decay chains are

specified. Five points (denoted S1-S5) in the SUGRA parameter space m0, A0,M1/2, sgnµ,

tan β have been suggested for study of SUSY production at the LHC [6] and are catalogued

in Table 1. These models have been well studied in the context of the LHC [7, 8, 9, 10],

and we shall use them as a reference to compare and contrast with new models, which do

not necessarily obey Eq. (2.3).

2.2 SUGRA point compatibility with string models

In Refs. [11, 12], the authors study the phenomenological viability of string and M-theory

scenarios coming from the desirable absence of dangerous charge and colour breaking (CCB)

minima or unbounded from below (UFB) directions in the effective potential. One of the

1It has been assumed that non-standard terms such as those discussed in Ref. [4] are disallowed because

they cause a naturalness problem in the presence of gauge singlets.
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Model m0/GeV M1/2/GeV A0/GeV tan β sgnµ Weak M-theory

S1 400 400 0 2 + × ×
S2 400 400 0 10 + × ×
S3 200 100 0 2 – × √

S4 800 200 0 10 + × √

S5 100 300 300 2.1 + (
√

) ×

Table 1: Compatibility of LHC SUGRA points S1-S5 with strongly/weakly coupled string models.

A tick in the ‘Weak’/‘M-theory’ column indicates that the sparticle spectrum could approximately

be derived from the weakly/strongly coupled string models respectively.

models considered in [12] is weakly coupled string theory with orbifold compactifications.

In this case, the soft masses evaluated at the string scale are dependent upon the modular

weights ni of the φi fields and do not necessarily conform with Eq. (2.3) [13]. Other string

scenarios exist [14, 15, 16] which erase the UFB/CCB global minima which we do not

explicitly investigate. For all modular weights equal to –1 however, the tree-level pattern

of soft-masses conforms with Eq. (2.3), with the additional constraint

M1/2 = −A0 =
√

3m0. (2.4)

In Table 1, we display under the “Weak” column whether each standard SUGRA point is

approximately compatible with this sub-class of universal string models. None of S1-S5 fit

exactly with this scenario, but S5 is the closest and would have a similar sparticle spectrum

if m0 were 173 GeV instead of 100 GeV. In regions of consistent radiative electroweak sym-

metry breaking (REWSB), the string model version of S5 has dangerous UFB minima [12].

We reject this class of model for further study, partly because S5 gives a similar spectrum,

and partly because it is already well studied, but mainly because of the UFB problem in

the potential mentioned above.

The “M-theory” column of Table 1 refers to compatibility with the strong-coupling

limit of E8 × E8 Heterotic string theory [17]. Given simple assumptions (that SUSY is

spontaneously broken by the auxiliary components of the bulk moduli superfields), the soft

terms of M-theory valid at MGUT are [18]

M1/2 =

√
3M3/2

1 + ǫ

(

sin θ +
ǫ√
3

cos θ

)

(2.5)

m2
0 = M2

3/2

[

1 − 3

(3 + ǫ)2

(

ǫ(6 + ǫ) sin2 θ + (3 + 2ǫ) cos2 θ − 2
√

3ǫ sin θ cos θ
)

]

(2.6)

A0 = −
√

3M3/2

3 + ǫ

[

(3 − 2ǫ) sin θ +
√

3ǫ cos θ
]

. (2.7)

So, the SUGRA parameters M1/2, m0, A0 become replaced by the goldstino angle

sin θ, the gravitino mass M3/2 and a ratio of moduli VEVs 0 < ǫ ≤ 1. ǫ = 0 corresponds

to the weakly-coupled perturbative string. For S1-S4, we notice from Table 1 that A0 = 0,

allowing us to solve Eq. (2.7):
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tan θ =

√
3ǫ

2ǫ − 3
. (2.8)

Specifying ǫ then determines the ratio |m0/M1/2|2, which is displayed in Fig. 1a.

|m0/M1/2|2 is always greater than one except as ǫ → ∞, ruling out M-theory derivations

of S1 and S2. S3 and S4 are compatible with ǫ = 0.21 and 0.53 respectively, as indicated

in the figure.
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Figure 1: Spectrum of M-theory valid at MGUT . (a) is valid for S1-S4, whereas (b) is valid for

S5. Dotted lines show the relevant parameters for models that reproduce the LHC SUGRA point

spectrum (S3-S5).

Eq. (2.8) is not relevant for S5 because A0 6= 0, but the condition M1/2 = A0 may be

solved yielding

tan θ =
−ǫ(3 + 2ǫ)√
3(3 + ǫ − ǫ2)

. (2.9)

|m0/M1/2|2 is then plotted using this relation against ǫ in Figure 1b. The figure indicates

that M-theory does not reproduce S5 for any realistic value of ǫ.

To summarise, Table 1 shows that S3-S4 are compatible with Eq.s (2.5)-(2.7), and

therefore M-theory. However, Refs. [11, 12] show that each of the points corresponding

to S3-S4 is in conflict either with UFB, CCB or REWSB constraints. In fact, all of the

M-theory parameter space examined in Ref. [12] was shown to be in conflict with one of

these constraints.

We have therefore shown that while the LHC SUGRA points include models which may

be derived from weakly or strongly coupled strings, they possess potentially catastrophic

global CCB and/or UFB minima. The existence of a global CCB or UFB minimum does

not necessarily rule out a model. Some models have meta-stable minima with lifetimes

longer than the current age of the universe [19, 20, 21]. The question of which minimum

the VEV of scalar fields rest in is one of cosmology, and beyond the scope of this paper.

We therefore take the view that if the bounds from CCB/UFB global minima are not valid,

examples of weakly/strongly coupled string models are approximated by or included within

S1-S5 so there is no need to construct another similar model to examine the string-derived
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SUSY phenomenology at the LHC. If one should take the global CCB/UFB minimum

bounds strictly however, Ref. [12] indicates that no variation of parameters in the class of

string models considered above will result in a model without CCB/UFB problems. We

thus conclude that it is useful to examine a new class of string model which does not have

difficulty evading CCB/UFB constraints. We note that it is also possible to evade the

CCB/UFB constraints by lowering the string scale in type I string models [15, 16].

2.3 Optimized string model

We now turn to the analysis of a model specifically designed to provide a large region of

parameter space without CCB/UFB problems [12]. It is a weak coupling model, where the

modular weights have been chosen so that

nQL
= ndc

R
= nuc

R
= −2, nLL

= nec
R

= nH1,2
= −1. (2.10)

The model is non-universal, but still in a family independent way, and so avoids seri-

ous problems associated with flavour changing neutral currents. As a consequence of the

assignments in Eq. (2.10), the string scale soft masses are

m2
H1,2

= m2
LL

= m2
ec
R

= M2
3/2 sin2 θ,

ALLH1ec
R

= −M1/2 =
√

3M3/2 sin θ,

mQL
= mdc

R
= muc

R
= 0, At = M3/2(

√
2 −

√
3

2
), (2.11)

so that the squarks are light and the sleptons heavy at the unification scale. This has the

effect of ameliorating the CCB/UFB problem. It should be noted [12] that the A-terms

of squarks other than the stop are not calculable for small tan β. We shall approximate

them here to be equal to At, but in fact they have a negligible effect upon the phenomenol-

ogy/spectrum unless tan β is large, in which case Ab = At.

To be definite, we choose model parameters tan β = 10, M3/2 = 250 GeV and θ = π/4.

We call this optimized model O1 and numerically its parameters are

mH1,2
= mLL

= mec
R

= 177 GeV,

−ALLH1ec
R

= M1/2 = 306 GeV,

mQL
= mdc

R
= muc

R
= 0, AQLH2uc

R
= AQLH1dc

R
= 137 GeV. (2.12)

We make the approximation that these relations hold at MGUT ∼ 2 × 1016 GeV, but

it should be borne in mind that logarithmic corrections from renormalisation between

Mstring ∼ 5 × 1017 and MGUT are expected. The spectrum and decay chains of the

sparticles are calculated using ISASUGRA and ISASUSY [22] using Eq. (2.12) as input.

Using three different Monte Carlo programs and the CTEQ3L parton distribution func-

tions [23], we calculate the total cross sections of SUSY particles at the LHC for models

S1-S5 and O1. Table 2 shows the comparison of HERWIG6.0 2 total cross-section with those

calculated by ISAJET7.40 [22] and SPYTHIA [25]. In each case, we have used the CTEQ3L

5



Program S1 S2 S3 S4 S5 O1

Slepton production

ISAJET7.40 1.0×10−2 1.1×10−2 2.8×10−1 8.7×10−4 2.3×10−1 1.2×10−1

HERWIG6.0 1.0×10−2 1.1×10−2 2.7×10−1 8.4×10−4 2.2×10−1 1.1×10−1

SPYTHIA 1.1×10−2 1.1×10−2 3.1×10−1 9.0×10−4 2.5×10−1 1.2×10−1

Squark/gluino production

ISAJET7.40 3.4×100 3.2×100 1.5×103 2.4×101 2.1×101 2.0×101

HERWIG6.0 3.2×100 3.2×100 1.4×103 2.3×101 2.0×101 1.7×101

SPYTHIA 3.7×100 2.8×100 1.3×103 2.0×101 1.7×101 1.6×101

Chargino/neutralino production

ISAJET7.40 1.8×10−1 2.1×10−1 1.6×101 3.9×100 6.1×10−1 6.7 ×10−1

HERWIG6.0 2.1×10−1 2.3×10−1 1.8×101 3.9×100 7.1×10−1 7.3×10−1

SPYTHIA 2.1×10−1 2.1×10−1 1.6×101 4.0×100 6.5×10−1 7.0×10−1

Associated production

ISAJET7.40 1.9×10−1 1.8×10−1 2.7×101 5.2×10−1 9.4×10−1 9.4×10−1

HERWIG6.0 1.9×10−1 1.9×10−1 2.5×101 4.9×10−1 9.6×10−1 8.9×10−1

SPYTHIA 2.1×10−1 1.8×10−1 2.7×101 4.7×10−1 9.6×10−1 8.9×10−1

Table 2: Comparison of LHC SUSY production hard subprocess total cross sections (in picobarns)

for the LHC SUGRA points S1-S5 and the optimized string model O1. By “associated production”

we mean the production of a chargino or neutralino in association with a gluino or squark. CTEQ3L

parton distributions were used and the statistical fractional error on each result is 2%.

parton distribution functions and the spectrum is calculated by ISASUGRA with mt = 175

GeV. As can be seen from the table, the three Monte-Carlo programs agree to about 10%.

Fig. 2 displays the result of the calculation using HERWIG6.0. It is noticeable from the

figure that S5 and O1 have broadly similar SUSY production cross-sections except for the

sleptons which are noticeably lower. This can be understood by comparing the spectra of

the two models, displayed in Table 3. The spectra are approximately similar, except for

the sleptons which are heavier in O1 relative to the squarks. This is a consequence of the

different choice of modular weights for the sleptons and the squarks. We therefore propose

to analyse LHC SUSY production in O1 using S5 as a benchmark or comparison. We will

show that the two models can be distinguished experimentally.

2This version of HERWIG, not officially released, was a developmental version of HERWIG6.1 [24].
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S1 S2 S3 S4 S5 O1
Model
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σ/
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squarks/gluinos
chargino/neutralinos
associated production

Figure 2: LHC SUSY production hard subprocess total cross sections for the LHC SUGRA points

S1-S5 and the optimized string model O1. HERWIG6.0 was used with the CTEQ3L parton distribu-

tions. Statistical fractional error on each point is 2%. Comparison with SPYTHIA, ISAJET7.40 is

shown in Table 2.

Mg muL
muc

R
mdL

mdc
R

mb1 mb2 mt1 mt2 mνe meL
mec

R
mντ

747 660 632 664 630 608 636 494 670 273 284 217 271

733 654 631 657 628 600 629 460 671 230 239 157 230

mτ1 mτ2 mχ0
1

mχ0
2

mχ0
3

mχ0
4

mχ+
1

mχ+
2

mh0 mH0 mA0 mH+

209 285 –125 –234 371 –398 –233 –398 114 450 449 456

157 239 –122 –233 499 –523 –232 –520 94 612 607 612

Table 3: Comparison of sparticle and Higgs spectrum of O1 and S5 (in bold type). These spectra

were calculated using ISASUGRA and all masses are quoted in GeV. Sign conventions are as in

ISAJET. The masses of the second family of sparticles are approximately equal to those of the first.
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3. Experimental observability

3.1 Method

The primary experimental aim is to take previously developed model-independent methods

for measuring SUSY particle masses (which were developed at standard SUGRA points)

and by testing them in the context of a new optimised model, identify where these methods

need to be generalised to perform well in both models. Secondarily it is to be shown

that, after modifying these methods’ treatments of the slepton sector, their performance is

sufficient to distinguish between the optimised and standard SUGRA scenarios.

�~q l�near ~�01q~�02 ~l�R l�far
Figure 3: “Sequential” decay.

To accomplish these aims, some model-dependent assumptions have to be made. In this

analysis, R-parity is taken to be conserved and certain sparticle decay chains are assumed

to exist. In R-parity conserving (RPC) models, SUSY particles are only produced in

pairs, and the lightest SUSY particle (LSP) is stable. SUSY events contain two of these

LSPs which, being only weakly interacting, escape detection and lead to SUSY events

with large amounts of missing transverse energy – the standard signature for RPC models.

The fact that these massive particles go missing from all RPC SUSY events means that

in these models it is not usually possible to measure particle masses by reconstructing

entire decay chains. Thus, as in [1], endpoints in kinematic variables constructed from

SUSY decay chains must instead be examined. Specifically, the “sequential” decay mode

q̃L → χ̃0
2q → l̃∓Rl±nearq → χ̃0

1l
∓
farl

±
nearq (see Figure 3) and the “branched” decay modes

q̃L → χ̃0
2q → χ̃0

1Xq → χ̃0
1l

±l∓q (see Figure 4) form the starting point for this investigation.

�~q ~�01l+q ~�02 Z l� �~q ~�01bq ~�02 h �b
Figure 4: “Branched” decays through the Z and Higgs bosons.

The kinematic edges used in [1] to identify particle masses at S5 contain:

• l+l− edge: This picks out, from the “sequential” decays, the position of the very

sharp edge in the dilepton invariant mass spectrum caused by χ̃0
2 → ll̃ followed by

l̃ → lχ̃0
1.
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• l+l−q edge: In “sequential” decays, the llq invariant mass spectrum contains a linearly

vanishing upper edge due to successive two-body decays. Our theoretical model of

the l+l−q edge is more model independent than that used in earlier studies as it does

do not assume any relation between the sparticle masses, other than the hierarchy

0 < mχ̃0
1

< ml̃R
< mχ̃0

2
< mq̃ necessary for the “seqential” decay chain to exist at all.

• l+l−q threshold: This is the non-zero minimum in the “sequential” llq invariant mass

spectrum, for the subset of events in which the angle between the two leptons (in

the centre of mass frame of the slepton) is greater than π/2. This translates into the

direct cut on mll described in Section 3.4.1.

• hq edge: This is one of the two instances of the Xq edge. In general, the Xq edge is

the upper edge of the distribution of the invariant mass of three visible particles in

the “branched” decays of Figure 4. The position of this edge is again determined by

two-body kinematics. Depending on the Higgs mass and the mass difference between

the χ̃0
2 and the χ̃0

1, one of the two “branched” decay chains will be strongly suppressed

with respect to the other, so typically only one edge will be visible. At S5 the Higgs

mode dominates, while the Z mode will dominate at O1.

As detailed later in this analysis, new edges are added to the list above. Two of them

are more general versions of other edges treated in [1], while another is entirely new. They

are the l±q high-, l±q low- and MT2 edges respectively. To summarise, the overall method

we apply in this paper consists of:

• finding a model-independent set of cuts which can be used to select events from which

the endpoints of all the kinematic edges may be measured,

• obtaining an estimate of the accuracy with which the edge positions might be deter-

mined by an LHC experiment,

• performing chi-squared fits of the expected positions of these edges (as functions of

the sparticle masses) to a set of “simulated edge measurements” one might expect

from an ensemble of such experiments, and

• interpreting the results as the statistics contribution to model independent sparticle

mass measurements of a typical LHC experiment.

Were all squarks to have the same mass, then (with perfect detector resolution and

with infinite statistics) the endpoints of the edges listed above would be found at the

positions given in Table 4. Note that these positions depend on four unknown parameters,

namely the masses of the squark, the slepton and the two neutralinos participating in each

decay. The mass of the lightest Higgs boson also appears, but we assume this will already

be known or will be obtained by other methods (e.g. [26]) to within 2%.

In a more realistic “non-degenerate squark masses” scenario, every distribution with a

squark related edge will actually be a superposition of many underlying distributions (one

for each squark mass), each having its edge at a slightly different location. This results
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in some smearing of the edges, even before detector effects (resolutions, acceptances, jet

energy calibrations etc.) are taken into account.

Related edge Kinematic endpoint

l+l− edge (mmax
ll )2 = (ξ̃ − l̃)(l̃ − χ̃)/l̃

l+l−q edge (mmax
llq )2 =



















max

[

(q̃−ξ̃)(ξ̃−χ̃)

ξ̃
, (q̃−l̃)(l̃−χ̃)

l̃
, (q̃l̃−ξ̃χ̃)(ξ̃−l̃)

ξ̃l̃

]

except for the special case in which l̃2 < q̃χ̃ < ξ̃2 and

ξ̃2χ̃ < q̃l̃2 where one must use (mq̃ − mχ̃0
1
)2.

Xq edge (mmax
Xq )2 = X + (q̃ − ξ̃)

[

ξ̃ + X − χ̃ +
√

(ξ̃ − X − χ̃)2 − 4Xχ̃

]

/(2ξ̃)

l+l−q threshold (mmin
llq )2 =

{

[ 2l̃(q̃ − ξ̃)(ξ̃ − χ̃) + (q̃ + ξ̃)(ξ̃ − l̃)(l̃ − χ̃)

−(q̃ − ξ̃)
√

(ξ̃ + l̃)2(l̃ + χ̃)2 − 16ξ̃l̃2χ̃ ]/(4l̃ξ̃)

l±nearq edge (mmax
lnearq

)2 = (q̃ − ξ̃)(ξ̃ − l̃)/ξ̃

l±farq edge (mmax
lfarq

)2 = (q̃ − ξ̃)(l̃ − χ̃)/l̃

l±q high-edge (mmax
lq(high))

2 = max
[

(mmax
lnearq

)2, (mmax
lfarq

)2
]

l±q low-edge (mmax
lq(low))

2 = min
[

(mmax
lnearq

)2, (q̃ − ξ̃)(l̃ − χ̃)/(2l̃ − χ̃)
]

MT2 edge ∆M = ml̃ − mχ̃0
1

Table 4: The absolute kinematic endpoints of invariant mass quantities formed from decay chains

of the types mentioned in the text for known particle masses. The following shorthand notation has

been used: χ̃ = m2

χ̃0

1

, l̃ = m2

l̃R
, ξ̃ = m2

χ̃0

2

, q̃ = m2
q̃ and X is m2

h or m2
Z depending on which particle

participates in the “branched” decay.

It is not possible to measure each of the squark masses separately. Consequently the

quantity mq̃ in Table 4 will, after being obtained from the “smeared” edges, represent a

squark mass scale rather than a specific squark mass. In all squark related edges, except

the l+l−q threshold, the contribution to the outermost part of each edge is provided by

the heaviest squarks. In the case of the l+l−q threshold, the “true” endpoint is set by

the lightest squark. However, if (as at O1 and S5) the other eleven squarks are much

heavier (see Table 3), it is easier to measure the contribution coming from them. A strong

correlation between mq̃ and the mass of the heaviest squark would therefore be expected.

More work would be required to fully understand the “theoretical” systematic errors

including the use of a full simulation of the expected edge positions. Better edge models
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than those used later in this analysis will definitely be needed to permit measurements of

edge positions to be better correlated with functions of the particle masses. Other sources

of systematic errors which require further analysis are the detector effects mentioned above,

combinatorial backgrounds near the edges and possible cut biases. Such systematic errors

can only meaningfully be studied when real data are available.

Although they are beyond the scope of this paper, it is assumed that the above inves-

tigations could be performed so as to leave the eventual edge resolutions determined only

by statistics and detector resolution. In this analysis, then, all edges are fitted with simple

shapes (see Section 3.5) with the intention of extracting only an estimate of the uncertainty

on the edge position, and not to obtain the edge position itself.

The first four edges listed in Table 4 thus constitute a minimal constraint on the four

unknown sparticle mass parameters, which may then be further constrained by the other

measurements which follow.

3.2 Other measurements

3.2.1 Near, far, high and low l±q edges

In “sequential” decays there are three observable outgoing particles. There are only four

different ways of grouping these particles together, and so only four different invariant

masses may be formed from them: mll, mllq, mlnearq and mlfarq. The first two of these, mll

and mllq, may be formed from the observed momenta without knowledge of which lepton

was lnear and which was lfar; only the total lepton four-momentum is required. Edges in

these invariant mass distributions have already been described. If it were possible to tag the

near- and far- leptons separately, the third and fourth invariant mass combinations could

also be formed unambiguously, allowing the positions of two more edges, mmax
lnearq

and mmax
lfarq

,

to play a part in the final fit. However, such tagging is impossible. If further information

is to be gathered from these decays in a model independent way, it is then necessary to

look for edges in variables (functions of mlnearq and mlfarq) which are observable. On an

event-by-event basis, then, we define

mlq(high) = max (ml+q,ml−q) ≡ max (mlnearq,mlfarq) (3.1)

and

mlq(low) = min (ml+q,ml−q) ≡ min (mlnearq,mlfarq). (3.2)

The simplest theoretical predictions for the positions of the corresponding edges, mmax
lq(high)

and mmax
lq(low), are listed in Table 4, along with the positions of the near- and far-edges.

Note that although the position of the high-edge is just the higher of mmax
lnearq

and mmax
lfarq

,

the position of the low-edge has a more interesting form. This asymmetry arises because

it is not always kinematically possible for the invariant mass of the lepton/quark pair

coming from the lower near/far distribution to approach min
[

mmax
lnearq

,mmax
lfarq

]

arbitrarily

closely, while simultaneously requiring that this invariant mass is less than that of the

other lepton/quark pair.

11



3.2.2 Zq edge

Since the neutralino mass difference at O1 (109 GeV) is too small to permit χ̃0
2 → hχ̃0

1,

“branched” decays are mediated by the Z. (Particle masses may be seen in Table 3.) The

cuts developed in [1] for picking out this special case of the Xq edge at S2 are found to

perform equally well at O1, so they are adopted unchanged. Although it might be possible

to benefit from adapting these cuts to O1 slightly, this temptation is resisted in order to

retain model independence.

3.2.3 MT2

In order to constrain the slepton and neutralino masses better, we construct another vari-

able, MT2(χ), whose distribution relates just these two masses. We base this on the

variable, proposed in [2], which looks at events containing two identical two body decays:

xy → X → Y a1a2 → Y b1c1b2c2, where the particles of types a and c are of unknown

mass, where particles of type c are undetectable, where the longitudinal momentum of the

incoming particles is also unknown, and where it is assumed that Y does not contain any

unobservable particles such as neutrinos. In such cases, the variable provides a kinematic

constraint on the masses of a and c. We seek to apply this primarily to LHC dislepton

events of the form qq̄ → l̃+R l̃−R → l+χ̃0
1l

−χ̃0
1 and so define our MT2(χ) by:

M2
T2(χ) ≡ min

/p
1
+/p

2
=/p

T

[

max {m2
T (pl1

T , /p1, χ),m2
T (pl2

T , /p2, χ)}
]

(3.3)

where

m2
T (pl

T ,qT , χ) ≡ m2
l + χ2 + 2(El

T Eχ
T − pl

T · qT ), (3.4)

El
T =

√

pl
T

2
+ m2

l and Eχ
T =

√

q2
T + χ2. (3.5)

This definition includes the lepton masses for completeness, although these are neglected

in all computations.

The value MT2(χ) takes for a given candidate dislepton event is a function of: the

transverse missing-momentum vector, /pT ; the transverse momentum vectors of the two

leptons, pl1
T and pl2

T ; and one other parameter – an estimate of the neutralino mass, χ (not

to be confused with the actual mass of the neutralino, mχ̃0
1
). Unlike the other parameters,

the value of χ is not measured in each event – events may be reinterpreted for different

values of χ. MT2(χ) has the property that, for signal events in a perfect detector,

max
events

[

MT2(mχ̃0
1
)
]

= ml̃. (3.6)

Thus when χ is indeed mχ̃0
1
, then the distribution of MT2 has an end point at the slepton

mass. Since the other observables allow mχ̃0
1

to be measured in a model independent

way, MT2 can then be included in the analysis to provide an additional constraint on the

slepton/neutralino mass difference.
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In practice the MT2 edge can be distorted by the finite resolution of the detector

or missing energy from soft underlying events. Additionally, standard model (SM) back-

grounds provide constraints on minimum detectable slepton/neutralino mass differences

(see Section 3.5). However the most important factor to control is the ability to correctly

identify which particle species is contributing to an observed MT2 edge – particularly since

it is possible to have multiple edges in the non standard model contributions to MT2 distri-

butions. At S5, for example, where both the right- and left-sleptons are lighter than at O1

(see Table 3), both l̃+R l̃−R and l̃+L l̃−L events pass the cuts, and two edges are generated. The

edge coming from the (lighter) right-slepton falls well under the SM background and so is

not measurable, while the (heavier) left-slepton still has a cross section for pair-production

high enough to let it form a good edge of its own at MT2(mχ̃0
1
) = ml̃L

. It is important

that this edge is not mistaken for the l̃R, so methods are needed to dismiss it. A detailed

prescription of how to go about such a dismissal is beyond the scope of this paper, but it

would clearly be accomplished by looking for inconsistency between a given edge-particle

hypothesis and all the other sparticle masses, the branching ratios and (in particular) the

strongly mass dependent pair-production cross sections, which could all be measured by

other means.

3.3 Event generation and detector simulation

All events, except those from qq̄ → W+W− background processes, are simulated by

HERWIG6.0. The W -pair events are generated by ISAJET7.42 [22]. The detector chosen for

simulation is the ATLAS detector [27, 28, 29], one of the two general purpose experiments

scheduled for the LHC. The LHC is expected to start running at a luminosity of about

1033 cm−2s−1 and this is expected to be increased over a period of about three years to

the design luminosity of 1034 cm−2s−1. These two periods are referred to, respectively, as

the periods of low and high luminosity running.

The performance of the detector is simulated by ATLFAST2.16 [30] which is primarily

a fast calorimeter simulation which parametrises detector resolution and energy smearing

and identifies jets and isolated leptons, in both the low and high luminosity environments.

Throughout this analysis, the parameters controlling ATLFAST’s jet and lepton isolation

criteria are left with the default values appropriate to the apparatus: i.e. jets must satisfy

pj
T ≥ 15 GeV and must lie in the pseudo-rapidity range −5 ≤ ηj ≤ 5, while electrons must

have pl
T ≥ 5 GeV, muons pl

T ≥ 6 GeV and both must lie in −2.5 ≤ ηl ≤ 2.5. For lepton

isolation a maximum energy of 10 GeV may be deposited in a cone about the lepton of

radius 0.2 in (η, φ)-space (φ being the azimuthal angle) while its separation from other jets

must be at least 0.4 in the same units.

At high luminosity approximately 20 minimum bias events (“pile-up” events) are ex-

pected to occur in each bunch crossing. Pile-up events are not simulated by ATLFAST2.16,

although it does alter its reconstruction resolutions to reflect the two different luminos-

ity environments. It must be checked that any cuts applied at high luminosity will not

be affected substantially by pile-up events. Within this article, events corresponding to

100 fb−1 are generated and are reconstructed in the high luminosity environment. This

approximately corresponds to one year of high luminosity running.
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3.4 Event selection cuts

Section 3.4.1 summarises all the cuts used to obtain the edges. The l+l− edge, l+l−q edge

and l+l−q threshold cuts do not differ significantly from those used in [1]. The l±q edge cuts,

however, do. The most significant change is the relaxation of the splitting requirement.

The original splitting requirement tries to guarantee that the jet which comes from the

quark produced in association with the observed dilepton pair is correctly identified. It

achieves this by insisting that:

• both the dilepton pair and one of the two hardest jets j1 and j2 (ranked by pT ) are

consistent with being the decay products of a squark (i.e. mllji
< mcutoff), and

• the invariant mass mlljj
of the two leptons and the other of the two highest pT jets is

inconsistent with these being the decay products of a squark (i.e. mlljj
> mcutoff).

Although the above demand for inconsistency increases the purity of the signal, it has a

significant detrimental effect on the efficiency. In our analysis the consistency requirement

is retained but the inconsistency requirement dropped. Instead we require that mll is

inside the expected region, given the l+l− edge measurement. We also perform background

subtraction, modelling the opposite-sign same-lepton-family (OSSF) backgrounds by the

distributions produced by those opposite-sign different-lepton-family (OSDF) events which

pass the same cuts.

The production cross section for dislepton events suitable for MT2 analysis is, in all

models, by far the smallest (see Figure 2). So to show that MT2 events passing cuts are

not in danger of being swamped by small variations in backgrounds or the cuts themselves,

two set of cuts referred to as “hard” and “soft” are developed. The “hard” cuts attempt

to maximise the signal to background ratio in the vicinity of the dislepton edge in the MT2

spectrum, while the much looser “soft” cuts try to maximise statistics at the edge at the

expense of allowing in additional SUSY backgrounds.

3.4.1 Cuts listed by observable

This section summarises the cuts used in the analysis. For notational purposes, recon-

structed leptons and jets are sorted by pT . For example j2, with corresponding transverse

momentum pj2
T , is the reconstructed jet with the second highest pT . All cuts are require-

ments unless stated otherwise.

l+l− edge

nleptons = 2, both leptons OSSF and pl1
T ≥ pl2

T ≥ 10 GeV.

njets ≥ 2 and pj1
T ≥ pj2

T ≥ 150 GeV. /pT ≥ 300 GeV.

The kinematics of OSSF leptons coming from background processes which produce

uncorrelated leptons (for example tau decays) are modelled well by OSDF lepton

combinations. Consequently, edge resolution is improved by “flavour subtracting”

OSDF event distributions from OSSF event distributions.
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l+l−q edge

nleptons = 2, both leptons OSSF and pl1
T ≥ pl2

T ≥ 10 GeV.

njets ≥ 4, pj1
T ≥ 100 GeV, and pj1

T ≥ pj2
T ≥ pj3

T ≥ pj4
T ≥ 50 GeV.

/pT ≥ max (100 GeV, 0.2Meffective) and Meffective ≥ 400 GeV, where Meffective is defined

by the scalar sum:

Meffective = /ET + pj1
T + pj2

T + pj3
T + pj4

T . (3.7)

Since the desired edge is a maximum, only the smaller of the two mllq combinations

which can be formed using j1 or j2 is used.

Flavour subtraction is employed here as at the l+l− edge.

l+l−q threshold

All the cuts for the l+l− edge as above.

In addition mmax
ll /

√
2 ≤ mll ≤ mmax

ll , where the value of mmax
ll would be obtained

from the l+l− edge in practice, but was determined theoretically in this analysis.

Since the desired edge is a minimum, only the larger of the two mllq combinations

which can be formed using j1 or j2 is used.

hq edge

nleptons = 0 and /pT > 300 GeV.

Exactly two b jets with p
jb1

T ≥ p
jb2

T ≥ 50 GeV. No other b jets, regardless of pT .

At least two non-b jets with p
jq1

T ≥ p
jq2

T ≥ 100 GeV, with at least one inside −2.0 ≤
ηj ≤ 2.0.

mbb within 17 GeV of Higgs peak in mbb spectrum.

Since the desired edge is a maximum, the non-b jet (i.e. jq1
or jq2

) chosen to form

the mhq invariant mass is that which minimises mhq.

Zq edge

nleptons = 2, both leptons OSSF and pl1
T ≥ pl2

T ≥ 10 GeV.

mll within 2.5 GeV of the centre of the Z-mass peak in the mll spectrum.

At least two non-b jets exist with pj
T ≥ 100 GeV and /pT ≥ 300 GeV.

Since the desired edge is a “maximum”, the jet chosen to form the mZq invariant

mass is the one (from those with pj
T ≥ 100 GeV) which minimises mZq.

Again, flavour subtraction is used.

l±q high and l±q low edges

All the cuts for the l+l−q edge above are required.

Additionally, events consistent with the l+l− edge measurement are selected by asking

for mll ≤ mmax
ll + 1 GeV.
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To choose the jet from which to form ml±q we select ji = j1 or j2, whichever gives

the smaller value of mllj, and require mllji
< mcutoff , where mcutoff is chosen to

be above the l+l−q edge, but is otherwise arbitrary. For easy comparison with [1],

mcutoff = 600 GeV was used in this analysis.

Finally, the two invariant mass combinations, ml±q, are assigned to mlq(high) and

mlq(low) as defined earlier by Equations (3.1) and (3.2).

MT2 edge (hard cuts)

Events are required to have exactly one OSSF pair of isolated leptons satisfying

pl1
T > 50 GeV and pl2

T > 30 GeV.

δT < 20 GeV is required, where δT = |pl1
T + pl2

T + /pT |. Large δT in signal events is

indicative of an unidentifiable transverse boost to the centre of mass frame, perhaps

due to initial state radiation. Large δT in other (not necessarily signal) events simply

suggests an inconsistency with the desired event topology.

Events containing one or more jets with pj
T > 40 to 50 GeV are vetoed. This cut

also helps to reduce standard model backgrounds, notably tt̄. The lower this cut is

placed, the better for the background rejection. However the cut cannot be placed

too low (especially at high luminosity) due to the significant number of jets coming

from the underlying event and other minimum bias events in the same bunch crossing.

For order 25 minimum bias events per bunch crossing, [31] estimates that about 10%

(1%) of bunch crossings will include a jet from the underlying event with a pT greater

than 40 GeV (50 GeV). Our results are not sensitive to variation of the jet veto cut

between 40 and 50 GeV, where at least 90% signal efficiency is expected.

Events with |ml1l2 − mZ | < 5 GeV are vetoed to exclude lepton pairs from Z bosons.

ml1l2 > 80 GeV and /pT > 80 GeV are also required.

MT2 edge (soft cuts) These are as above, but

• the /pT requirement is lowered from 80 to 50 GeV,

• the upper limit for δT is extended from 20 to 90 GeV, and

• the dilepton invariant mass cut is removed altogether.
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3.5 Edge resolutions
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Figure 5: The S5 distributions whose endpoints are described in Table 4: a) the l+l− edge, b) the

l+l−q edge, c1) the l±q high-edge c2) the l±q low-edge, d) the l+l−q threshold and e) the hq edge.

Plots were produced with the cuts described in Table 3.4.1. The number of events corresponds to

100 fb−1 of high luminosity running.

By applying at S5 the cuts listed in Section 3.4.1 we reproduce the mll and mllq

distributions whose edges are analyzed in [1] (see Figure 5: a, b and d). We also confirm

that the same cuts may also be used to generate edges of similar quality at O1 (see Figure

6: a, b and d). In addition, plots c1 and c2 in Figures 5 and 6 display the mlq(high)

and mlq(low) distributions generated from the modified l±q edge cuts also listed above.

Numerical results are summarised in Table 5.

17



0

50

100

150

200

0 50 100 150

mll (GeV)

d
σ/

d
m

ll 
(E

ve
n

ts
/1

00
fb

-1
/0

.3
75

G
eV

)

(a)

0

100

200

300

0 200 400 600 800 1000

mllq (GeV)

d
σ/

d
m

llq
 (

E
ve

n
ts

/1
00

fb
-1

/5
G

eV
)

(b)

0

100

200

0 200 400 600 800 1000

High mlq (GeV)

d
σ/

d
m

lq
 (

E
ve

n
ts

/1
00

fb
-1

/5
G

eV
)

(c1)

0

100

200

300

400

0 200 400 600 800 1000

Low mlq (GeV)

d
σ/

d
m

lq
 (

E
ve

n
ts

/1
00

fb
-1

/5
G

eV
)

(c2)

0

20

40

60

0 200 400 600 800 1000

mllq (GeV)

d
σ/

d
m

llq
 (

E
ve

n
ts

/1
00

fb
-1

/5
G

eV
)

(d)

0

20

40

60

80

0 200 400 600 800 1000

mzq (GeV)

d
σ/

d
m

zq
 (

E
ve

n
ts

/1
00

fb
-1

/5
G

eV
)

(e)

Figure 6: The O1 distributions whose endpoints are described in Table 4: a) the l+l− edge, b) the

l+l−q edge, c1) the l±q high-edge c2) the l±q low-edge, d) the l+l−q threshold and e) the Zq edge.

Plots were produced with the cuts described in Table 3.4.1. The number of events corresponds to

100 fb−1 of high luminosity running.

Similar pictures are seen at S5 and O1. The most obvious difference between the two

sets of data is the peak at the Z mass present in Figure 6a but absent in Figure 5a. This

peak comes from direct χ̃0
2 → χ̃0

1Z → χ̃0
1l

+l− decays, which have a branching fraction of

39% at O1 compared with 0.65% at S5. The most common direct neutralino decay mode

at S5 is through the h0 ( 65% ) of which only a tiny proportion ( 0.02% ) decay to the two

light leptons – the partial decay width Γ(h0 → ff) going approximately as m2
f . Scenarios

in which the l+l− edge happens to coincide with the Z peak require special treatment and
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(a) (b) (c)

Figure 7: Line-shapes used for fits to the mass distributions. Shape (a) (or its reflection in the

vertical axis) is the standard “straight line” used to extract the l+l−q edge, l±q high-edge, l±q

low-edge and l+l−q threshold resolutions. Shape (b) models the expected shape of the sharp l+l−

edge in the absence of detector effects. The l+l− edge is actually fitted with shape (c), which is

identical to (b) except that it is smeared with a gaussian resolution whose width is a free parameter

of the fit.

are not considered here.

In order to make useful statements about the degree to which model parameters may be

extracted from the endpoints and edges of these distributions, it is necessary to obtain an

estimate of the accuracy with which these observables may be measured. It is expected that

the errors on all of the observables considered here will eventually be statistics dominated,

so simple fits have been made to the data to obtain estimates of the statistical errors on the

edge or end point locations. The shapes fitted to the data (see Figure 7) and the algorithms

for determining the boundaries of the fitted regions have been kept as simple and generic

as possible, with the intention of making the fit results both conservative and simple to

interpret. Given real data, it would be worth putting substantial effort into understanding

how detector and physics effects affect the shape of each distribution in turn. This could

significantly improve particle mass resolutions. The resolutions obtained from the fits to

the distributions in Figure 5 and Figure 6 are listed in Table 5.

The MT2 distributions obtained after the cuts listed in Section 3.4.1 are shown in

Figure 8. The signal dislepton region having the desired edge is the unhatched region on

each plot. Conveniently, most of the other SUSY events passing the cuts (mainly events

containing gauginos) are also distributed with an edge located at a similar position to the

disleptons’. This is due to the fact that such events often include pairs of slepton decays,

and these may sometimes occur in combination with low jet activity and without additional

leptons being produced inside detector acceptance. Consequently, for much of the SUSY

background which passes cuts, the cuts are accepting MT2 values which do not degrade

edge performance significantly. Note that ∆M(χ) = MT2(χ) − χ ≥ 0 is plotted evaluated

at χ = mχ̃0
1
, so this should have an edge at ∆Mmax = ml̃ − mχ̃0

1
. Of course, mχ̃0

1
is not

actually known a priori, so generating this graph in a real experiment requires an estimate

of mχ̃0
1

to be obtained by other means. For our purposes it will be sufficient if the position

of the edge of the distribution can be measured to about 10%, and this determines the

accuracy required of the neutralino mass estimate χ. The width ∆M(χ) = MT2(χ) − χ

remains approximately stable at the 10% level for mχ̃0
1
/2 < χ < 2mχ̃0

1
. To illustrate the

relative insensitivity of ∆Mmax(χ) to χ near mχ̃0
1
, plots generated from the same data as

before but with χ ≈ mχ̃0
1
± 50 GeV are shown in Figure 9. Satisfying the 10% requirement
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above by obtaining a suitable value of χ within such a ±40% range is not difficult and

may be accomplished by first performing a “cut down” version of the analysis described

later in the text, but omitting the MT2 data, and then choosing the estimate, χ, to be the

resulting reconstructed neutralino mass.

Determining the likely resolution for the MT2 edge requires a slightly different ap-

proach to that used for the other edges. Whereas the cuts used to obtain the invariant

mass distributions have high SM rejections (primarily due to the presence of at least one

high mass /pT or Meffective cut), the MT2 cuts cannot be so hard, primarily because the

desired dislepton events have have very little jet activity. With the dislepton production

cross sections typically two orders of magnitude smaller than the squark/gluino production

cross sections (Table 2) a low efficiency is not affordable. There are also irreducible SM

backgrounds (primarily W+W− → l+l−νν̄ but also tt̄ → bb̄W+W− → jjl+l−νν̄ in cases

where jets are below the pT cut or outside detector acceptance) which have signatures

identical to dislepton events. These backgrounds are clearly visible in Figure 8 and would

cause problems for naive straight line fitting techniques.

The standard model backgrounds in Fig-
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Figure 10: Variation with χ of the SM con-

tributions to max(MT2(χ)−χ) (for a number

of events corresponding to 100 fb−1) which

provides a measure of the minimum l̃-χ̃0
1 mass

difference which is needed for signal MT2

events to be able to extend beyond the SM

backgrounds. Events contributing to this plot

were selected using the “hard” MT2 cuts.

ure 8, although large, are easy to control. The

SM edge is very clean, since the events which

pass the cuts are well reconstructed and there

are no noticeable tails. The SM edge will fall

at mW for χ = 0, corresponding to the mass

of the missing neutrino in SM events. As χ in-

creases, the SM edge recedes to lower masses

as shown in Figure 10, falling to 60 GeV for

χ = 100 GeV. A significant excess of events

above this threshold would be a clear signal for

non-SM processes. Such an excess will appear

when the l̃-χ̃0
1 mass difference exceeds 80 GeV

for low mχ̃0
1

and 50 GeV for high mχ̃0
1
.

We estimate that, using MT2 with either

set of cuts, it is possible to measure ∆Mmax =

ml̃ − mχ̃0
1

to 10% or better. The “hard” MT2

cuts successfully remove almost all SUSY back-

ground above the SM threshold at the expense

of only retaining half of the events passing the

“soft” cuts. For both sets of cuts the SM thresh-

old, at about 60 GeV, would be approximately three sigma away from ∆Mmax at this

accuracy.
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Figure 8: These MT2 distributions for O1 are generated from 100 events fb−1 at high luminosity,

and from the MT2 cuts described in section 3.4. (a) and (b) use the “hard” cuts, while (c) and (d)

use the “soft” cuts. In (a) and (c), events containing a jet with pT > 40 GeV were vetoed. In (b)

and (d), this cut was relaxed to 50 GeV. In all plots, MT2(χ) is evaluated at χ = mχ̃0

1

. The results

are presented in the form MT2(mχ̃0

1

) − mχ̃0

1

in order to show the edge of the signal region located

at the difference between the slepton and neutralino masses (92.5 GeV).
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Figure 9: These two plots are identical to Figure 8(d) except that the true neutralino mass (125

GeV) is not presupposed. Instead, (a) uses χ = 70 GeV and (b) uses χ = 170 GeV.

S5 O1 Table 4 values

Endpoint Fit Fit error Fit Fit error S5 O1

l+l− edge 109.10 0.13 70.47 0.15 109.12 70.50

l+l−q edge 532.1 3.2 544.1 4.0 536.7 530.5

l±q high-edge 483.5 1.8 515.8 7.0 464.2 513.6

l±q low-edge 321.5 2.3 249.8 1.5 337.0 231.3

l+l−q threshold 266.0 6.4 182.2 13.5 264.9 168.1

Xq edge 514.1 6.6 525.5 4.8 509.2 503.4

∆M (MT2 edge) —— —— —— 10% 35.7 92.5

Table 5: Endpoints and associated fit uncertainties. The results of the naive fits shown in Figures 5

and 6 may be seen in the ‘fit’ and (one-sigma) ‘fit error’ columns. For the reasons outlined in

Section 3.1 there is presently a lack of good theoretical predictions for these edge positions. (In this

context a “good prediction” is one capable of taking into account, up to a level compatible with

the statistical/fit errors, either the naivety of the fits, or the effects introduced by edge distortions

and the presence of backgrounds.) The best guides presently available are the quantities listed

in Table 4, evaluated at mq̃ equal to the largest squark mass. These values are also shown for

comparison purposes. All values are GeV except where stated otherwise.
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3.6 Reconstructing sparticle masses

Sparticle masses are reconstructed by performing a chi-squared fit with between four and

six free parameters p. The main parameters of the fit are mχ̃0
1
, ml̃, mχ̃0

2
and mq̃. Where

appropriate, mh and mZ also appear as fit parameters, although if they do, they are

strongly constrained (particularly in the case of the Z) by present LEP measurements or

expected LHC errors (0.0077% and 2.0% respectively).

The chi-squared, as a function of the free parameters p, is then formulated as:

χ2(p) =
n

∑

1

(Osm
i − Oi(p))2

σi
2

, (3.8)

where Osm
i = Oi(pmodel) + σiXi are n “smeared observables”, Xi ∼ N(0, 1) are the n

random variables from the Normal distribution (with mean 0 and standard deviation 1)

which accomplish the smearing, σi is the anticipated statistical error for the ith observable

(approximated by the fit error listed in Table 5), and Oi(p) is the value one would expect

for the ith observable given the parameters p (for examples see Table 4). pmodel indicates

the actual masses of the sparticles in the particular model being considered. The results

of the fit, pfit, are then those which minimise the chi-squared. pfit may be interpreted as

the sparticle masses which might be reconstructed by an LHC experiment after obtaining

100fb−1 at high luminosity, with the Xi parametrising the experimental errors. In order to

determine the accuracy with which this reconstruction can be performed, the above fitting

process is repeated many times for different values of the Xi, producing the distributions

of reconstructed particle masses which follow.

Fractional RMS Fractional mean Reconstruction width
√

ε2
p εp/10

−3
√

(mp − mp)2

p S5 O1 S5 O1 S5 O1

χ̃0
1 0.140 0.175 11.4 8.0 17 GeV 22 GeV

l̃R 0.112 0.091 8.8 5.7 17 GeV 20 GeV

χ̃0
2 0.074 0.084 6.0 5.3 17 GeV 20 GeV

q̃ 0.034 0.047 2.7 2.4 22 GeV 29 GeV

Table 6: RMS and mean values, for each of the particles p, of the fractional mass-error distributions

(εp) in Figures 13 and 14. Also shown are the widths of the distributions of the reconstructed particle

masses (from Figures 11 and 12).

Figures 11 and 12 show the probability distributions expected for the reconstructed χ̃0
1,

l̃, χ̃0
2 and q̃ masses, while Figures 13 and 14 show the corresponding fractional errors, εp,

for the same quantities. All are approximately Gaussian and have reassuringly small tails.

Statistics summarising these plots (widths, means and RMS values) are listed in Table 6.

It may be seen that in both O1 and S5 the widths of the mass distributions for all

four particles are very similar. This is because, in localized regions of parameter space,

the edges tend to constrain mass differences far better than absolute masses. Evidence of

this may be seen in Figure 15 which shows the scatter of reconstructions in the mχ̃0
1
-ml̃R
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Figure 11: Reconstructed χ̃0
1, l̃, χ̃0

2 and q̃ masses at S5. The small arrows indicate the masses

used as the input parameters, pmodel.

plane. It is interesting to note that without the MT2 constraint at O1, the fit’s chi-squared

commonly has two distinct and competing comparable minima – one at high and one at

low values of ml̃R
. The simultaneous existence of these minima is a direct consequence

of putting the near and far l±q edges on an equal footing in this analysis, allowing more

than one interpretation for each of the high and low edges. The need to resolve this kind

of ambiguity in model-independent investigations of this type illustrates the importance of

establishing reliable model-independent ways of measuring the absolute scale of ml̃R
−mχ̃0

1

(or a related quantity) even if only to an accuracy of 20-30%.

The clear gap between the reconstruction regions for O1 and S5 in Figure 15 supports

the original claim that, systematic errors permitting, it will be possible to distinguish

between the two scenarios.
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Figure 12: Reconstructed χ̃0
1, l̃, χ̃0

2 and q̃ masses at O1. The small arrows indicate the masses

used as the input parameters, pmodel.
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Figure 13: Fractional errors in reconstructed χ̃0
1, l̃, χ̃0

2 and q̃ masses at S5.
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Figure 14: Fractional errors in reconstructed χ̃0
1, l̃, χ̃0

2 and q̃ masses at O1.
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4. Conclusions

Some of the five standard LHC SUGRA points are compatible with universal perturbative

string and M-theory, but dangerous CCB/UFB breaking minima are present in each exam-

ple. We therefore studied a perturbative string model which is optimized to ameliorate the

CCB/UFB problems present in the other models. The optimized model is non-universal

because the squarks and sleptons are split in mass at the string scale. We identify the

SUGRA point with the most similar spectrum and hard SUSY production cross sections

(S5) to compare the optimized model with. The main difference is that the sleptons are

heavier and therefore have lower production cross-sections. We have demonstrated the

existence of a method by which an LHC experiment will be able to measure the masses of

the (lighter) sleptons and the two neutralinos at O1 in a largely model independent way.

In a specific comparison of S5 and O1 we have shown that this method will be able to

distinguish a SUGRA model from an optimised string model with very similar properties.

More importantly, we expect that the techniques developed here are general enough

to be used to discriminate between other pairings of optimised and non-optimised models

with similar characteristics. The optimized model analysis applies to a more general class

of models than the string model itself. We could apply it to models with non-universal

SUSY breaking terms at MGUT in which the squarks and sleptons are explicitly split in

mass. These constitute a superset of the particular string model considered here.
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