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Abstract: Previous LHC forecasts for the constrained minimal supersymmetric

standard model (CMSSM), based on current astrophysical and laboratory measure-

ments, have used priors that are flat in the parameter tanβ, while being constrained

to postdict the central experimental value of MZ . We construct a different, new and

more natural prior with a measure in µ and B (the more fundamental MSSM param-

eters from which tanβ and MZ are actually derived). We find that as a consequence

this choice leads to a well defined fine-tuning measure in the parameter space. We

investigate the effect of such on global CMSSM fits to indirect constraints, providing

posterior probability distributions for Large Hadron Collider (LHC) sparticle produc-

tion cross sections. The change in priors has a significant effect, strongly suppressing

the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the

probable values of sparticle masses. We also show how to interpret fit information

from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the pro-

file likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared

and contrasted.
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1. Introduction

The impending start-up of the LHC makes this a potentially exciting time for super-

symmetric (SUSY) phenomenology. Anticipating the arrival of LHC data, a small

industry has grown up aiming to forecast the LHC’s likely discoveries. There are big

differences between nature of the questions answered by a forecast, and the ques-

tions that will be answered by the experiments themselves when they have acquired

compelling data. A weather forecast predicting “severe rain in Cambridgeshire at

the end of the week” should not be confused with a discovery of water. However, the

forecast is something which influences short-term flood plans and will set priorities

within the list of “urgent repairs needed by flood defences”.

LHC weather forecasts for sparticle masses or cross sections set priorities among

signals needing to be investigated, or among expensive Monte Carlo background

samples competing to be generated. Forecasts can influence the design parameters

of future experiments and colliders. In advance of LHC we would like to have some

sort of idea of what luminosity will be required in order to detect and/or measure su-

persymmetry. There is also the question of which signatures are likely to be present.

In order to answer questions such as these, a programme of fits to simple SUSY

models has proceeded in the literature [4, 5, 6, 7, 8]. The fits that we are interested
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in have made the universality assumption on soft SUSY breaking parameters: the

scalar masses are set to be equal to m0, the trilinear scalar couplings are set to be

A0 multiplied by the corresponding Yukawa couplings and all gaugino masses are set

to be equal to M1/2. Such assumptions, when applied to the MSSM, are typically

called mSUGRA or the constrained minimal supersymmetric standard model. The

universality conditions are typically imposed at a gauge unification scale MGUT ∼ 2×
1016 GeV. The universality conditions are quite strong, but allow phenomenological

analysis of a varied subset of MSSM models. The universality assumption is not

unmotivated since, for example, several string models [9] predict MSSM universality.

Until recently, CMSSM fits have relied upon fixed input parameters [1, 2, 3, 4, 5,

6, 7] in order to reduce the dimensionality of the CMSSM parameter space, rendering

scans viable. Such analyses provide a good idea of what are the relevant physical

processes in the various parts of parameter space. More recently, however, it has been

realised that many-parameter scans are feasible if one utilises a Markov Chain Monte

Carlo (MCMC) [6]. Such scans were used to perform multi-dimensional a Bayesian

analysis of indirect constraints [10]. A particularly important constraint came from

the relic density of dark matter ΩDMh2, assumed to consist solely of neutralinos, the

lightest of which is the lightest supersymmetric particle (LSP). Under the assumption

of a discrete symmetry such as R−parity, the LSP is stable and thus still present in

the universe after being thermally produced in the big bang. The results of ref. [10]

were confirmed by an independent study [11], which also examined the prospects

of direct dark matter detection. Since then, a study of the µ < 0 branch of the

CMSSM was performed [12] and implications for Tevatron Higgs searches have been

discussed [13].

It is inevitable that LHC forecasts will contain a large degree of uncertainty. This

is unavoidable as, in the absence of LHC data, constraints are at best indirect and

also few in number. Within a Bayesian framework, the components of the answer

that are incontestable lie within a simple “likelihood” function, whereas the parts

which parameterise our ignorance concerning the nature of the parameter space we

are about to explore are rolled up into a prior. By separating components into these

two domains, we have an efficient means of testing not only what the data is telling

is about new physics, but also of warning us of the degree to which the data is (or

isn’t) compelling enough to disabuse us of any prior expectations we may hold.

In [10, 11], Bayesian statements were made about the posterior probability den-

sity of the CMSSM, after indirect data had been taken into account. The final result

of a Bayesian analysis is the posterior probability density function (pdf), which in

previous MCMC fits, was set to be

p(m0, M1/2, A0, tan β, s|data) = p(data|m0, M1/2, A0, tanβ, s)
p(m0, M1/2, A0, tanβ, s)

p(data)
(1.1)
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for certain Standard Model (SM) inputs s and ratio of the two MSSM Higgs vacuum

expectation values tanβ = v2/v1. The likelihood p(data|m0, M1/2, A0, tanβ, s) is

proportional to e−χ2/2, where χ2 is the common statistical measure of disagreement

between theoretical prediction and empirical measurement. The prior p(m0, M1/2,

A0, tanβ, s) was taken somewhat arbitrarily to be flat (i.e. equal to a constant)

within some ranges of the parameters, and zero outside those ranges. Eq. 1.1 has

an implied measure for the input parameter. If, for example, we wish to extract the

posterior pdf for m0, all other parameters are marginalised over

p(m0|data) =

∫

dM1/2 dA0 d tanβ ds p(m0, M1/2, A0, tanβ, s|data). (1.2)

Thus a flat prior in, say, tan β also corresponds to a choice of measure in the marginal-

isation procedure:
∫

d tanβ. Before one has a variety of accurate direct data (coming,

for instance, from the LHC), the results depend somewhat upon what prior pdf is

assumed.

In all of the previous MCMC fits, Higgs potential parameters µ and B were

traded for MZ and tanβ using the electroweak symmetry breaking conditions, which

are obtained by minimising the MSSM Higgs potential and obtaining the rela-

tions [16]:

µB =
sin 2β

2
(m̄2

H1
+ m̄2

H2
+ 2µ2), (1.3)

µ2 =
m̄2

H1
− m̄2

H2
tan2 β

tan2 β − 1
− M2

Z

2
. (1.4)

Eqs. 1.3,1.4 were applied at a scale Q =
√

mt̃1mt̃2 , i.e. the geometrical average of the

two stop masses1. |µ| was set in order to obtain the empirically measured central

value of MZ in Eq. 1.4 and then Eq. 1.3 was solved for B for a given input value of

tan β and sign(µ). The flat prior in tan β in Eq. 1.1 does not reflect the fact that

tan β (as well as MZ) is a derived quantity from the more fundamental parameters

µ, B. It also does not contain information about regions of fine-tuned parameter

space, which we may consider to be less likely than regions which are less fine-tuned.

Ref. [15] clearly illustrates that if one includes µ as a fundamental MSSM parameter,

LEP has ruled out the majority of the natural region of MSSM parameter space.

A conventional measure of fine-tuning [26] is

f = maxp

[

d lnM2
Z

d ln p

]

, (1.5)

where the maximisation is over p ∈ {m0, M1/2, A0, µ, B}. Here, Eq. 1.4 is viewed as

providing a prediction for MZ given the other MSSM parameters. When the SUSY

1Higgs potential loop corrections are taken into account by writing [16] m̄Hi
≡ m2

Hi
− ti/vi, ti

being the tadpoles of Higgs i and vi being its vacuum expectation value.
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parameters are large, a cancellation between various terms in Eq. 1.4 must be present

in order to give MZ at the experimentally measured value. Eq. 1.5 is supposed to

provide a measure of how sensitive this cancellation is to the initial parameters. In

Ref. [14], a prior ∝ 1/f was shown to produce fits that were not wildly different to

those with a flat prior, but the discrepancy illustrated the level of uncertainty in the

fits. The new (arguably less arbitrary) prior discussed in section 2 will be seen to

lead to much larger differences.

Here, we extend the existing literature in two main ways: firstly, we construct

a natural prior in the more fundamental parameters µ, B, showing in passing that

it can be seen to act as a check on fine-tuning. We display the MCMC fit re-

sults from such priors. Secondly, we present posterior pdfs for LHC supersymmetric

(SUSY) production cross-sections. These have not been calculated before. We also

present a comparison with a more frequentist statistics oriented fit, utilising the

profile likelihood. The difference between the flat-priors Bayesian analysis and the

profile likelihood contains information about volume effects in the marginalised di-

mensions of parameter space. We describe an extremely simple and effective way to

extract profile likelihood information from the MCMC chains already obtained from

the Bayesian analysis with flat priors.

In the proceeding section 2, we derive the new more natural form for the prior

distributions mentioned above. In section 3, we describe our calculation of the likeli-

hood. In section 4, we investigate the limits on parameter space and pdfs for sparticle

masses resulting from the new more natural priors. We go on to discuss what this

prior-dependence means in terms of the “baseline SUSY production” for the LHC,

and find out what it tells us about the “error-bars” which should be attached to this

and earlier LHC forecasts. In section 5, we present our results in the profile likelihood

format. In the following section 6 we present pdfs for total SUSY production cross-

sections at the LHC. Section 7 contains a summary and conclusions. In Appendix A,

we compare the fit results assuming the flat tan β priors with a well-known result in

the literature in order to find the cause of an apparent discrepancy.

2. Prior Distributions

We wish to start with a measure defined in terms of fundamental parameters µ and

B, hence

p(all data) =

∫

dµ dB dA0 dm0 dM1/2 ds
[

p(m0, M1/2, A0, µ, B, s)

p(all data|m0, M1/2, A0, µ, B, s)
]

, (2.1)

where p(all data|m0, M1/2, A0, µ, B, s) is the likelihood of the data with respect to the

CMSSM and p(m0, M1/2, A0, µ, B, s) is the prior probability distribution for CMSSM

and SM parameters. Of these two terms, the former is well defined, while the latter
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is open to a degree of interpretation due to the lack of pre-existing constraints on m0,

M1/2, A0, µ, and B2. We may approximately factorise the unambiguous likelihood

into two independent pieces: one for MZ and one for other data not including MZ ,

the latter defined to be p(data|m0, M1/2, A0, µ, B, s)

p(all data|m0, M1/2, A0, µ, B, s)

≈ p(data|m0, M1/2, A0, µ, B, s) × p(MZ |m0, M1/2, A0, µ, B, s)

≈ p(data|m0, M1/2, A0, µ, B, s) × δ(MZ − M cen
Z ). (2.2)

In the last step we have approximated the MZ likelihood by a delta function on

the central empirical value M cen
Z because its experimental uncertainties are so tiny.

According to the Particle Data Group [17], the current world average measurement

is MZ = 91.1876 ± 0.0021 GeV.

Using Eqs. 1.3,1.4 to calculate a Jacobian factor and substituting Eq. 2.2 into

Eq. 2.1, we obtain

p(all data) ≈
∫

d tanβ dA0 dm0 dM1/2 [r(B, µ, tanβ)

p(data|m0, M1/2, A0, µ, B, s)p(m0, M1/2, A0, µ, B, s)
]

MZ=Mcen

Z

,(2.3)

where the condition MZ = M cen
Z can be applied by using the constraints of Eqs. 1.3,1.4

with MZ = M cen
Z . The Jacobian factor

r(B, µ, tanβ) = MZ

∣

∣

∣

∣

B

µ tanβ

tan2 β − 1

tan2 β + 1

∣

∣

∣

∣

(2.4)

disfavours high values of tanβ and µ/B and comes from our more natural initial

parameterisation of the Higgs potential parameters in terms of µ, B. We will refer

below to r(B, µ, tanβ) in Eq. 2.9 as the “REWSB prior”. Note that, if we consider

B → B̃ ≡ µB to be more fundamental than the parameter B, one loses the factor of

µ in the denominator of r and by sending
∫

dB dµ →
∫

dB̃ dµ µ. However, in the

present paper we retain B as a fundamental parameter because of its appearance in

many supergravity mediation models of SUSY breaking.

It remains for us to define the prior, p(m0, M1/2, A0, µ, B, s), a measure on the

parameter space. In our case, this prior must represent our degree of belief in each

part of the space, in advance of the arrival of any experimental data. There is no

single “right” way of representing ignorance in a prior3, and so some subjectivity

2If an earlier experiment had already set clear constraints on m0, M1/2, A0, µ, B, then even the

prior would be well defined, being the result of that previous experiment. As things stand, however,

we don’t know anything about the likely values of these parameters, and so the prior must encode

our ignorance/prejudice as best we can.
3There are however plenty of “wrong” ways of representing ignorance. Choosing

p(m0, M1/2, A0, µ, B, s) ∝ δ(m0 − 40 GeV)(arctan (A0/B))100 would clearly impose arbitrary and

unjustifiable constraints on at least three of the parameters!
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must enter into our choice. We must do our best to ensure that our prior is as

“even handed” as possible. It must give approximately equal measures to regions

of parameter space which seem equally plausible. “Even handed” need not mean

“flat” however. A prior flat in m0 is not flat in m2
0 and very non-flat in log m0.

We must do our best to identify the important (and unimportant) characteristics

of each parameter. If the absolute value of a parameter m matters, then flatness

in m may be appropriate. If dynamic range in m is more expressive, then flatness

in 1/m (giving equal weights to each order of magnitude increase in m) may make

sense. If only the size of m relative to some related scale M is of importance, then a

prior concentrated near the origin in log(m/M) space may be more appropriate. The

freedoms contained within these, to some degree subjective, choices permit others to

generate priors different from our own, and thereby test the degree to which the data

or the analysis is compelling. If the final results are sensitive to changes of prior,

then more data or a better analysis may be called for.

The core idea that we have chosen to encode in (and which therefore defines)

our prior on m0, M1/2, A0, µ, B, and s may be summarised as follows. (1) We

define regions of parameter space where there parameters all have similar orders

of magnitude to be more natural than those where they are vastly different. For

example we regard m0 = 101 eV, M1/2 = 1020 eV as unnatural. In effect, we will

use the distance measure between each parameter and a joint ‘supersymmetry scale”

MS to define our prior. (2) We do not wish to impose unity of scales at anything

stronger than the order of magnitude level. (3) We do not wish to presuppose any

particular scale for MS itself – that is for the data to decide.

Putting these three principles together, we first define a measure that would seem

reasonable were the supersymmetry scale of MS to be known. Later we will integrate

out this dependence on MS. To begin with we factorise the prior probability density

for a given SUSY breaking scale MS:

p(m0, M1/2, A0, µ, B, s|MS) = p(m0|MS) p(M1/2|MS) p(A0|MS) (2.5)

p(µ|MS) p(B|MS) p(s),

where we have assumed that the SM experimental inputs do not depend upon MS.

This factorisation of priors could be changed to specialise for particular models of

SUSY breaking. For example, dilaton domination in heterotic string models predicts

m0 = M1/2 = −A0/
√

3. In that case, one would neglect the separate prior factors

for A0, M1/2 and m0 in Eq. 2.5, leaving only one of them. Since it is our intention to

impose unity between m0, M1/2, A0 and MS at the “order of magnitude” level, we

take a prior probability density

p(m0|MS) =
1√

2πw2m0

exp

(

− 1

2w2
log2(

m0

MS

)

)

. (2.6)
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The normalising factor in front of the exponential ensures that
∫

∞

0
dm0 p(m0|MS) =

1. w specifies the width of the logarithmic exponential, Eq. 2.6 implies that m0 is

within a factor ew of MS at the “1σ level” (i.e. with probability 68%). We take

analogous forms for p(M1/2|MS) and p(µ |MS), by replacing m0 in Eq. 2.6 with M1/2

and |µ| respectively. Note in particular that our prior p(µ|MS) favours superpotential

parameter µ to be within an order of magnitude of MS and thus also within an order

of magnitude of the soft breaking parameters. This should be required by whichever

model is responsible for solving the µ problem of the MSSM, for example the Giudice-

Masiero mechanism [18]. A0 and B are allowed to have positive or negative signs

and values may pass through zero, so we chose a different form to Eq. 2.6 for their

prior. However, we still expect that their order of magnitude isn’t much greater than

MS and the prior probability density

p(A0|MS) =
1√

2πe2wMS

exp

(

− 1

2(e2w)

A2
0

M2
S

)

, (2.7)

ensures that |A0| < ewMS at the 1σ level. The prior probability density of B is given

by Eq. 2.7 with A0 → B. We don’t know MS a priori, so we marginalise over it:

p(m0, M1/2, A0, µ, B) =

∫

∞

0

dMS p(m0, M1/2, A0, µ, B|MS) p(MS) (2.8)

=
1

(2π)5/2w5m0|µ|M1/2

∫

∞

0

dMS

M2
S

exp

[

− 1

2w2

(

log2(
m0

MS
) + log2(

|µ|
MS

)+

log2(
M1/2

MS
) +

w2A2
0

e2wM2
S

+
w2B2

M2
Se2w

)]

p(MS)

and p(MS) is a prior for MS itself, which we take to be p(MS) = 1/MS, i.e. flat in

the logarithm of MS. The marginalisation over MS amounts to a marginalisation

over a family of prior distributions, and as such constitutes a hierarchical Bayesian

approach [19]. The integration over several distributions is equivalent to adding

smearing due to our uncertainty in the form of the prior. As far as we are aware,

the present paper is the first example of the use of hierarchical Bayesian techniques

in particle physics. In general, we could also have marginalised over the hyper-

parameter w, for example using a Gaussian centred on 1, but we find it useful below

to examine sensitivity of the posterior probability distribution to w. We therefore

leave it as an input parameter for the prior distribution. We evaluate the integral in

Eq. 2.8 numerically using an integrator that does not evaluate the integrand at the

endpoints, where it is not finite. We have checked that the integral is not sensitive

to the endpoints chosen: the change induced by changing the integration range to

[10 GeV, 1016] GeV is negligible. We refer to Eq. 2.8 as the “same order” prior. To

summarise, the posterior probability density function is given by

p(m0, M1/2, A0, tanβ, s|data) ∝
[

p(data|m0, M1/2, A0, µ, B, s) × (2.9)

r(B, µ, tanβ) p(s) p(m0, M1/2, A0, µ, B)
]

MZ=Mcen

Z

,
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where we have written [. . .]MZ=Mcen

Z

on the right hand side of above relation, implying

that µ and B are eliminated in favour of tanβ and M cen
Z by Eqs. 1.3, 1.4.

We may view the prior factors in Eq. 2.9

-10

-5

 0

 5

 10

 0  500  1000  1500  2000  2500

ln
(p

)

m0 (GeV)

REWSB
w=1
w=2

1/f

Figure 1: Prior factors p in the

CMSSM at SPS1a with varying m0.

Standard Model inputs have been fixed

at their empirically central values.

to be inverse fine-tuning parameters: where

the fine-tuning is high, the priors are small.

It is interesting to note that a cancellation

of order ∼ 1/ tanβ is known to be required

in order to achieve high values of tanβ [25].

This appears in our Bayesian prior as a result

of transforming from the fundamental Higgs

potential parameters µ, B to tan β and the

empirically preferred value of MZ . We dis-

play the various prior factors in Fig. 1 as a

function of m0 for all other parameters at the

SPS1a CMSSM point [20]: M1/2 = 250 GeV,

A0 = 100 GeV, tanβ = 10 and all SM in-

put parameters fixed at their central empiri-

cal values. The figure displays the REWSB

prior, the REWSB prior+same order priors

with w = 1, 2 (simply marked w = 1, w = 2 respectively) and the inverse of the

fine-tuning parameter defined in Eq. 1.5. We see that the REWSB prior actually

increases with m0 along the chosen line in CMSSM parameter space. This is due to

decreasing µ in Eq. 2.4 towards the focus-point4 at high m0 [55]. The conventional

fine-tuning measure f remains roughly constant as a function of m0, whereas the

same order priors decrease strongly as a function of m0. This is driven largely by the

1/m0 factor in Eq. 2.8 and the mismatch between large m0 and M1/2 = 250 GeV,

which leads to a stronger suppression for the smaller width w = 1 rather than w = 2.

The SM input parameters s used are displayed in Table 1. Since they have

all been well measured, their priors are set to be Gaussians with central values

and widths as listed in the table. We use Ref. [17] for the QED coupling constant

αMS, the strong coupling constant αMS
s (MZ) and the running mass of the bottom

quark mb(mb)
MS, all in the MS renormalisation scheme. A recent Tevatron top

mass mt measurement [21] is also employed, although the absolutely latest value has

shifted slightly [22]. p(s) is set to be a product of Gaussian probability distributions5

p(s) ∝ ∏

i e
−χ2

i , where

χ2
i =

(ci − pi)
2

σ2
i

(2.10)

for observable i. ci denotes the central value of the experimental measurement, pi

4The focus-point region is a subset of the hyperbolic branch [53].
5Taking the product corresponds to assuming that the measurements are independent.
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represents the value of SM input parameter i. Finally σi is the standard error of the

measurement.

We display marginalised prior pdfs in Fig. 2
SM parameter constraint

1/αMS 127.918±0.018

αMS
s (MZ) 0.1176±0.002

mb(mb)
MS 4.24±0.11 GeV

mt 171.4±2.1 GeV

Table 1: SM input parameters

for the REWSB, REWSB+same order (w =

1) and REWSB+same order (w = 2) priors.

The plots have 75 bins and the prior pdf has

been marginalised over all unseen dimensions.

No indirect data has been taken into account

in producing the distributions, a feasible elec-

troweak symmetry breaking vacuum being the

only constraint. The priors have been obtained by sampling with a MCMC using the

Metropolis algorithm [23, 24], taking the average of 10 chains of 100 000 steps each.

Figs. 2a,b shows that although the same order priors are heavily peaked towards

small values of m0 < 500 GeV and M1/2 ∼ 180 GeV, the 95% upper limits shown by

the vertical arrows are only moderately constrained for m0. w = 1 is not surprisingly

more peaked at lower mass values. The REWSB histograms on the other hand, pre-

fer high m0 (due to the lower values of µ there) and are quite flat in M1/2. The same

order of magnitude requirement is crucial in reducing the preferred scalar masses.

The REWSB prior is fairly flat in A0 whereas the w = 1, w = 2 priors are heavily

peaked around zero. The M1/2 same-order priors are more strongly peaked than,

for example, m0 because M1/2 is strongly correlated with |µ| and so the logarith-

mic measure of the prior (leading to the factor of 1/(m0M1/2|µ|) in Eq. 2.8 becomes

more strongly suppressed. tanβ is peaked very strongly toward lower values of the

considered range for the REWSB prior due to the 1/ tanβ suppression, but becomes

somewhat diluted when the same order priors are added, as shown in Fig. 2d.

3. The Likelihood

Our calculation of the likelihood closely
CMSSM parameter range

A0 -4 TeV to 4 TeV

m0 60 GeV to 4 TeV

M1/2 60 GeV to 2 TeV

tan β 2 to 62

Table 2: Input parameters

follows Ref. [14]. For completeness, we

describe the procedure here. Including

the SM inputs in Table 1, eight input

parameters are varied simultaneously. The

range of CMSSM parameters considered

is shown in Table 2. The SM input pa-

rameters are allowed to vary within 4σ

of their central values. Experimental errors are so small on the muon decay constant

Gµ that we fix it to its central value of 1.16637 × 10−5 GeV−2.

In order to calculate predictions for observables from the inputs, the program

SOFTSUSY2.0.10 [27] is first employed to calculate the MSSM spectrum. Bounds

upon the sparticle spectrum have been updated and are based upon the bounds
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Figure 2: Prior probability distributions marginalised to the (a) m0, (b) M1/2, (c) A0

and (d) tan β directions. 95% upper limits are shown by the labelled arrows except in (c),

where the arrows delimit the 2-sided 95% confidence region. All distributions have been

binned with 75 equally spaced bins.

collected in Ref. [11]. Any spectrum violating a 95% limit from negative sparti-

cle searches is assigned a zero likelihood density. Also, we set a zero likelihood for

any inconsistent point, e.g. one which does not break electroweak symmetry cor-

rectly, or a point that contains tachyonic sparticles. For points that are not ruled

out, we then link the MSSM spectrum via the SUSY Les Houches Accord [28] to

micrOMEGAs1.3.6 [29], which then calculates ΩDMh2, the branching ratios BR(b →
sγ) and BR(Bs → µ+µ−) and the anomalous magnetic moment of the muon (g−2)µ.

The anomalous magnetic moment of the muon aµ ≡ (g− 2)µ/2 was measured to

be aexp
µ = (11659208.0±5.8)×10−10 [30]. Its experimental value is in conflict with the

SM predicted value aSM
µ = (11659180.4± 5.1)× 10−10 from [31], which comprises the

latest QED [32], electroweak [33], and hadronic [31] contributions to aSM
µ . This SM

prediction however does not account for τ data which is known to lead to significantly
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different results for aµ, implying underlying theoretical difficulties which have not

been resolved so far. Restricting to e+e− data, hence using the numbers given above,

we find

δ
(g − 2)µ

2
≡ δaµ ≡ aexp

µ − aSM
µ = (27.6 ± 7.7) × 10−10. (3.1)

This excess may be explained by a supersymmetric contribution, the sign of which is

identical to the sign of the superpotential µ parameter [34]. After obtaining the one-

loop MSSM value of (g − 2)µ from micrOMEGAs1.3.6, we add the dominant 2-loop

corrections detailed in Refs. [35, 36]. The W boson mass MW and the effective lep-

tonic mixing angle sin2 θl
w are also used in the likelihood. We take the measurements

to be [37, 38]

MW = 80.398 ± 0.027 GeV, sin2 θl
w = 0.23153 ± 0.000175, (3.2)

where experimental errors and theoretical uncertainties due to missing higher order

corrections in SM [39] and MSSM [40, 41] have been added in quadrature. The most

up to date MSSM predictions for MW and sin2 θl
w [40] are finally used to compute the

corresponding likelihoods. A parameterisation of the LEP2 Higgs search likelihood

for various Standard Model Higgs masses is utilised, since the lightest Higgs h of the

CMSSM is very SM-like once the direct search constraints are taken into account.

It is smeared with a 2 GeV assumed theoretical uncertainty in the SOFTSUSY2.0.10

prediction of mh as described in Ref. [14]. The rare bottom quark branching ratio

to a strange quark and a photon BR(b → sγ) is constrained to be [42]

BR(b → sγ) = (3.55 ± 0.38) × 10−4, (3.3)

obtained by adding the experimental error with the estimated theory error [43] of

0.3 × 10−4 in quadrature. The WMAP3 [44] power law Λ-cold dark matter fitted

value of the dark matter relic density is

Ω ≡ ΩDMh2 = 0.104+0.0073
−0.0128 (3.4)

In the present paper, we assume that all of the dark matter consists of neutralino

lightest supersymmetric particles and we enlarge the errors on ΩDMh2 to ±0.02 in

order to incorporate an estimate of higher order uncertainties in its prediction.

We assume that the measurements and thus also the likelihoods extracted from

Ω, BR(b → sγ), MW , sin2 θl
w, (g− 2)µ, BR(Bs → µ+µ−) are all independent of each

other so that the individual likelihood contributions may be multiplied. Observables

that have been quoted with uncertainties are assumed to be Gaussian distributed

and are characterised by χ2.

4. CMSSM Fits With the New Priors

In order to sample the posterior probability density, we ran 10 independent MCMCs

of 500 000 steps each using a newly developed banked [45] Metropolis-Hastings

– 11 –



MCMC. The banked method was specifically designed to sample several well isolated

or disconnected local maxima, for example maxima in the posterior pdfs of µ > 0

and µ < 0. Previously, we had normalised the two samples via bridge sampling [12],

which requires twice the number of samples than for one maximum, with additional

calculations required after the sampling. Bank sampling, on the other hand, can be

performed with roughly an identical number of sampling steps to the case of one

maximum and does not require additional normalisation calculations after the sam-

pling. The chance of a bank proposal for the position of the next point in the chain

was set to 0.1, meaning that the usual Metropolis proposal had a chance of 0.9. The

bank was formed from 10 initial Metropolis MCMC runs with 60 000 steps each and

random starting points that were drawn from pdfs flat in the ranges displayed in Ta-

bles 1,2. The initial 4000 steps were discarded in order to provide adequate “burn-in”

for the MCMCs. We check convergence using the Gelman-Rubin R̂ statistic [48, 10],

which provides an estimated upper bound on how much the variance in parameters

could be decreased by running for more steps in the chains. Thus, values close to 1

show convergence of the chains. In previous publications, we considered R̂ < 1.05 to

indicate convergence of the chains for every input parameter. We have checked that

this is easily satisfied for all of our results.

We compare the case of flat tan β priors to the new prior in Fig. 3. The posterior

pdf has been marginalised down to the M1/2−m0 plane and binned into 75×75 bins,

as with all two-dimensional distributions in the present paper. Both signs of µ have

been marginalised over, again like all following figures in this paper unless explicitly

mentioned. The bins are normalised with respect to the bin with maximum posterior.

We identify the usual CMSSM regions of good-fit in Fig. 3a. The maximum at the

lowest value of m0 corresponds to the stau co-annihilation region [49], where τ̃1 and

χ0
1 are quasi-mass degenerate and efficiently annihilate in the early universe. This

region is associated with tan β < 40, as Fig. 3b indicates. m0 ∼ 1 TeV in Fig. 3a

has large tan β ∼ 50. This region corresponds to the case where the neutralinos

efficiently annihilate through s−channel pseudoscalar Higgs bosons A0 into bb̄ and

τ τ̄ pairs [50, 51]. The region at low M1/2 and high m0 in Fig. 3a is the h0 pole

region [52], where neutralinos annihilate predominantly through an s−channel of

the lightest CP even Higgs h0. In order to evade LEP2 Higgs constraints, this

also requires large tan β. The focus point region [54, 55, 56] is the region around

M1/2 ∼ 0.5 TeV and m0 = 2− 4 TeV, where the lightest neutralino has a significant

higgsino component, leading to efficient annihilation into gauge boson pairs. This

region is somewhat sub-dominant in the fit, but extends through most of the range

of tanβ considered.

We see a marked difference between Figs. 3a and 3b. The A0 and h0 pole regions

have vanished with the REWSB priors. The A0 pole region is suppressed because the

REWSB prior disfavours the required large values of tanβ, as shown in Fig. 2d. The

h0 pole region is suppressed because the REWSB prior disfavours large values of |A0|,
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Figure 3: CMSSM fits marginalised in the unseen dimensions for (a,c) flat tan β priors,

(b,d) the REWSB+same order prior with w = 1. Contours showing the 68% and 95%

regions are shown in each case. The posterior probability in each bin, normalised to the

probability of the maximum bin, is displayed by reference to the colour bar on the right

hand side of each plot.

see Fig. 2c, and large values of |A0|/M1/2. Large values of |A0| are necessary in this

region in order to achieve large stop mass splitting and therefore large corrections

to the lightest Higgs mass. Without such corrections, h0 falls foul of LEP2 Higgs

mass bounds. The focus-point region has been diminished by the REWSB priors

mainly because the large values of m0 required become suppressed as in Fig. 2a.

This suppression comes primarily from the requirement that SUSY breaking and

Higgs parameters be roughly of the same order as each other. Figs. 3b,d display

only one good-fit region corresponding to the stau co-annihilation region at low m0.

The banked method [45] allows an efficient normalisation of the µ > 0 and µ < 0

branches, both of which are included in the figure.

We now turn to a comparison of the REWSB+same order prior fits. We consider

such fits to give much more reliable results than the flat tan β fits, and a large differ-

ence between fits for w = 1 to w = 2 would provide evidence for a lot of sensitivity
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to our exact choice of prior. Some readers might consider the flat tan β priors to

be not unreasonable, and those readers could take the large difference between flat

priors and the new more natural ones as a result of uncertainty originating from

scarce data. Pdfs of sparticle and Higgs masses coming from the fits are displayed
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Figure 4: MSSM particle mass pdfs and profile likelihoods: dependence upon the prior

in the CMSSM. The vertical arrows display the one-sided 95% upper limits on each mass.

There are 75 bins on each abscissa. Histograms marked “profile” are discussed in section 5

and have been multiplied by different dimensionful constants in order to be comparable by

eye with the w = 1, 2 pdfs. The profile 95% confidence level upper limits are calculated by

finding the position for which the 1-dimensional profile likelihood has 2∆ ln L = 2.71 [46].

in Figs. 4a-4h along with 95% upper bounds calculated from the pdfs. The pdfs
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displayed are for the masses of (a) the lightest CP even Higgs, (b) the CP-odd Higgs,

(c) the left-handed squark, (d) the gluino, (e) the lightest neutralino, (f) the lightest

chargino, (g) the right-handed selectron and (h) the lightest-stau lightest-neutralino

mass splitting respectively. The most striking feature of the figure is that the Higgs

and sparticle masses tend to be very light for the REWSB and same order prior,

boding well for future collider sparticle searches. This effect is consistent with a

preference for smaller m0, M1/2 exhibited by the new priors in Fig. 2b,d. In general,

there is remarkably little difference between the two different cases of w = 1 or w = 2.

This fact is perhaps not so surprising considering that the shape of the priors doesn’t

change enormously with w, as Figs. 1,2 show. The sparticle mass distributions for

priors that are flat in tanβ were displayed in Refs. [10, 11, 12] and show a spread

up to much higher values of the masses. As we have explained above, we do not

believe flat tan β to be an acceptable prior. Some readers may consider it to be so:

such readers may consider our fits to be considerably less robust to changes in the

prior than Fig. 4 indicates. Lower values of A0 and tanβ help to make the lightest

CP-even Higgs light in the REWSB+same order prior case, shown in Fig. 4a. The

mass ordering mq̃l
> mχ0

2
> ml̃R

> mχ0
1

allows a “golden channel” decay chain of

q̃l → χ0
2 → l̃R → mχ0

1
. Such a decay chain has been used to provide several im-

portant and accurate constraints upon the mass spectrum [60]. In some regions of

parameter space, it can also allow spin information on the sparticles involved to be

extracted [47]. We may calculate the Bayesian posterior probability of such circum-

stances by integrating the posterior pdf over the parameter space that allows such

a mass ordering. From the MCMC this is simple: we simply count the fraction of

sampled points that have such a mass ordering6. The posterior probability of such

a mass ordering is high: 0.93 for w = 1 and 0.85 for w = 2, indicating that anal-

yses using the decay chain are likely to be possible (always assuming the CMSSM

hypothesis, of course).

As pointed out in Ref. [10], the flat tanβ posteriors extend out to the assumed

upper range taken on m0 and so the flat tanβ pdf for the scalar masses were artifi-

cially cut off at the highest masses displayed. This is no longer the case for the new

choice of priors since the regions of large posterior do not reach the chosen ranges

of parameters, as shown in Figs. 3b,d. Thus our derived upper bounds on, for in-

stance mq̃L
in Fig. 4c and mẽR

in Fig. 4g are not dependent upon the m0 < 4 TeV

range chosen. The mass splitting between the lightest stau and the neutralino is

displayed in Fig. 4h. The insert shows a blow-up of the quasi-degenerate stau-co-

annihilation region and has a different normalisation to the rest of the plot. Since the

REWSB+same order prior fit results lie in the co-annihilation region, nearly all of

the probability density predicts that mτ̃1 −mχ0
1

< 20 GeV. It is a subject of ongoing

research as how to best verify this at the LHC [57]. In Fig. 4g, the plot has been cut

6Other absolute probabilities quoted below are calculated in an analogous manner.
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off at a probability P of 0.1 and the histograms actually extend to 0.70,0.68 in the

lowest bin for w = 1 and w = 2 respectively. Similarly, we have cut off Fig. 4h at

a probability of 0.05. The fits extend to 0.93, 0.85 for w = 1, w = 2 respectively in

the lowest bin.
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Figure 5: Statistical pull of different observables in CMSSM fits. We show the pdfs for

the experimental measurements as well as the posterior pdf of the predicted distribution in

w = 1 and w = 2 fits. Profile histograms are discussed in section 5 and are multiplied by

different dimensionful constants in order to be comparable by eye with the w = 1, 2 pdfs.
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We examine the statistical pull of the various observables in Fig. 5. In each

case, the likelihood coming from the empirical constraint is shown by the continuous

distribution. The histograms show the fitted posterior pdfs depending upon the prior.

We have sometimes slightly altered the normalisation of the curves and histograms

to allow for clearer viewing. Fig. 5a shows that the ΩDMh2 pdf is reproduced well

by all fits irrespective of which prior distribution is used. This is because the fits

are completely dominated by the ΩDMh2 contribution, since the CMSSM parameter

space typically predicts a much larger value than that observed by WMAP [12].

Figs. 5b,5c,5d show that BR[b → sγ], MW , sin2 θl
w are all constrained to be near

their central values, with less variance than is required by the empirical constraint.

Direct sparticle search limits mean that sparticles cannot be too light and hence

cannot contribute strongly to the three observables. The rare decay branching ratio

BR[Bs → µµ] is displayed in Fig. 5e. Both fits are heavily peaked around the SM

value of 10−8.5, indeed the most probable bin has been decapitated in the figure for

the purposes of clarity, and really should extend up to a probability of around 0.9.

The SUSY contribution to BR(Bs → µµ) ∝ tan β6/M4
SUSY and so the preference for

small tan β beats the preference for smallish sparticle masses ∼ O(MSUSY ) in the new

fits. In all of Figs. 5a-e, changing the width of the priors from 1 to 2 has negligible

effect on the results. The exception to this trend is δaµ, as shown in Fig. 5f. δaµ

has a shoulder around zero for w = 2, corresponding to a small amount of posterior

probability density at high scalar masses, clearly visible from Fig. 4g. Such high

masses suppress loops responsible for the SUSY contribution to (g − 2)µ. δaµ is

pulled to lower values than the empirically central value by direct sparticle limits

and the preference for values of tanβ that are not too large. The almost negligible

portion of the graph for which δaµ < 0 corresponds to µ < 0 in the CMSSM. (g−2)µ

has severely suppressed the likelihood, and therefore the posterior, in this portion of

parameter space. For flat tanβ priors, and δaµ = 22± 10× 10−10, we had previously

estimated that the ratio of integrated posterior pdfs between µ < 0 and µ > 0 was

0.7 − 0.16. For the new priors, where sparticles are forced to be lighter, their larger

contribution to δaµ further suppresses the µ < 0 posterior pdf. From the samples,

we estimate7 P (µ < 0)/P (µ > 0) = 0.001 ± 002 for w = 1 and 0.003 ± 0.003 for

w = 2, respectively for δaµ = (27.6 ± 7.7) × 10−10. Thus, while the probabilities

are not accurately determined, we know that they are small enough to neglect the

possibility of µ < 0.

5. Profile Likelihoods

Since, for a flat prior, Eq. 1.1 implies that the posterior is proportional to the likeli-

hood in a Bayesian analysis, one can view the distributions resulting from the MCMC

7These numbers come from the mean and standard deviation of 10 chains, each of which is

considered to deliver an independent estimate.
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scan as being a “likelihood map” [10]. If one marginalises in the unseen dimensions

in order to produce a one or two-dimensional plot, one either interprets the resulting

distribution probabilistically in terms of the posterior, or alternatively as a way of

viewing the full n-dimensional likelihood map, but without a probabilistic interpre-

tation in terms of confidence limits, or credible intervals. Instead, frequentist often

eliminate unwanted parameters (nuisance parameters) by maximization instead of

marginalization. The likelihood function of the reduced set of parameters with the

unwanted parameters at their conditional maximum likelihood estimates is called the

profile likelihood [58]. Approximate confidence limits can be set by finding contours

of likelihood that differ from the best-fit likelihood by some amount. This amount

depends upon the number of “seen dimensions” and the confidence level, just as in

a standard χ2 fit [46].

While we believe that dependence on priors actually tells us something useful

about the robustness of the fit, we are also aware that many high energy physicists

find the dependence upon a subjective measure distasteful, and would be happier

with a frequentist interpretation. When the fits are robust, i.e. there is plentiful

accurate data, we expect the Bayesian and frequentist methods to identify similar

regions of parameter space in any fits. We are not in such a situation with our

CMSSM fits, as we have shown in previous sections, and so we provide the profile

likelihood here for completeness.

We can use the scanned information from the MCMC chains to extract the profile

likelihood very easily. Let us suppose, for instance, that we wish to extract the profile

in m0 − M1/2 space. We therefore bin the chains obtained in m0 − M1/2 as before.

We find the maximum likelihood in the chain for each bin and simply plot that. The

95% confidence level region then is delimited by the likelihood contour at a value

2∆ ln L = 5.99 [46], where ∆ ln L = lnLmax − ln L. The profile likelihoods in the

m0−M1/2 and m0−tanβ plane are shown in Fig. 6. Comparing Figs. 6a and 3a, we

see that the profile likelihood gives similar information to the Bayesian analysis with

flat likelihoods. The main difference is that the profile likelihood’s confidence limit

only extends out to (M1/2, m0) < (1.0, 2) TeV, whereas for the Bayesian flat-prior

analysis, values up to (M1/2, m0) < (1.5, 4) TeV are viable. Comparing Fig. 6b and

3c, we again see similar constraints, except that the tail at high tan β up to larger

values of m0 > 2 TeV has been suppressed in the profile. From the difference we

learn the following facts: in this high tanβ-high m0 tail, the fit to data is less good

than in other regions of parameter space. However, it has a relatively large volume

in unseen dimensions of parameter space, which enhances the posterior probability

in Fig. 3c. The difference between the two plots is therefore a good measure of such a

so-called “volume effect”. In ref. [11, 13], an average-χ2 estimate was constructed in

order to identify such effects. We find the profile likelihood to be easier to interpret,

however. It also has the added bonus of allowing a frequentist interpretation.

We show the profile likelihoods of the various relevant masses in Fig. 4. There is
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Figure 6: Two dimensional profile likelihoods in the (a) m0 −M1/2 plane, (b) m0 − tan β

plane. There are 75 bins along each direction. The inner (outer) contours show the 68%

and 95% confidence level regions respectively.

a general tendency for all of the masses to spread to somewhat heavier values than

the w = 1, 2 same order+REWSB priors. We remind the reader that the profile

likelihood histograms are not pdfs. In the figure, they have been multiplied by

dimensionful constants that make them comparable eye to the Bayesian posteriors

on the plot. The gluino mass shows the most marked difference: it appears that

higher gluino masses are disfavoured by volume effects in the Bayesian analyses.

However, while the profiles differ from the Bayesian analyses to a much larger degree

than the w = 1 or w = 2 prior fits differ from each other, they are not wildly

different to the Bayesian analyses. The higgs mass distributions look particularly

similar. There is a qualitative difference in Fig. 4g,h, where mẽR
and mτ̃1 −mχ0

1
have

a non-negligible likelihood up to 1 TeV, unlike the posterior probabilities.

Figs. 5a-f show the profile likelihoods of the pull of various observables. We

see that ΩDMh2 shows a negligible difference to the posteriors. This is because

the dark matter relic density constraint dominates the fit and determines the shape

and volume of the viable parameter space. Most of the profiles are similar to the

posteriors in the figure except for Fig. 5e, where the likelihood extends out to much

higher values of the branching ratio of Bs → µµ. These values correspond in Fig. 6b

to high tan β but low m0 points. The posteriors for high BR(Bs → µµ) ∝ 1/MSUSY
2

are suppressed because of the large volumes at high m0 (and hence at high MSUSY ,

where BR(Bs → µµ) approaches the Standard Model limit due to decoupling).

In Fig. 5c, we see enhanced statistical fluctuations in the upper tail of the profile

likelihood of MW , presumably due to a small number of sampled points there. These

fluctuations could be reduced with further running of the MCMCs, however.
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6. LHC SUSY Cross Sections

In order to calculate pdfs for the expected CMSSM SUSY production cross-sections

at the LHC, we use HERWIG6.500 [59] with the default parton distribution func-

tions. We calculate the total cross-section of the production of two sparticles with

transverse momentum pT > 100 GeV. We take the fitted probability distributions

of the previous section with the REWSB+same order priors and use HERWIG6.500

to calculate cross-sections for (a) strong SUSY production i.e. squark and gluino

production, (b) inclusive weak gaugino production (i.e. a neutralino or chargino in

association with another neutralino, a chargino, a gluino, a squark or a gluino) and

(c) 2-slepton production. No attempt is made here to fold in experimental efficiencies

or the branching ratios which follow the decays into final state products. The total

cross-section times assumed integrated luminosity therefore serves as an upper-bound

on the number of events expected at the LHC in the different channels (a)-(c). Some

analyses give a few percent for efficiencies, but for specific cases of more difficult

signatures, the efficiencies can be tiny.

We show the one dimensional pdfs for the various SUSY production cross-sections

in Fig. 7a. We should bear in mind that the LHC is expected to deliver 10 fb−1 of

luminosity per year in “low-luminosity” mode, whereas afterward this will increase

to 30 fb−1. Several years running at log10 σ/fb= 0 therefore corresponds to of order a

hundred production events for 100 fb−1. log10 σ/fb= 0 then gives some kind of rough

limit for what might be observable at the LHC, once experimental efficiencies and

acceptances are factored in. Luckily, we see that strong production and inclusive weak

gaugino production are always above this limit, providing the optimistic conclusion

that SUSY will be discovered at the LHC (provided, as always in the present paper,

that the CMSSM hypothesis is correct and that the reader accepts our proposal for

the prior pdfs). The 95% lower limits on the total direct production cross-sections

are 360 fb, 90 fb and 0.01 fb for strongly interacting sparticle, inclusive weak gaugino

and slepton production respectively. There therefore is a small chance that direct

slepton production may not be at observable rates. The posterior probability that

σ(pp → l̃+l̃−) < 1 fb is 0.063. Even in the event that direct slepton production is

at too slow a rate to be observable, it is possible that sleptons can be observed and

measured by the decays of other particles into them [60]. The pdfs of total SUSY

production cross-sections for w = 2 are almost identical to those shown in the figure.

The main difference is in the total direct slepton production cross section, where the

small bump at σ ∼ 10−2 fb is somewhat enlarged. It has the effect of placing the 95%

lower bound on the slepton production cross-section at 4.8×10−4 fb. For w = 2, the

chance of the di-slepton production cross-section being less than 1 fb is 0.15. The

strong and weak gaugino production cross-sections have 95% lower bounds of 570,90

fb respectively for w = 2.

We examine correlations between the various different cross-sections in Figs. 7b-
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Figure 7: Total SUSY LHC production cross-section pdfs in the CMSSM with

REWSB+same order w = 1 priors. “strong” refers to squark/gluino production, “weak”

to inclusive weak gaugino production and “slepton” to direct slepton production. In (a),

95% lower limits on the cross-sections are shown by the vertical arrows. The probability

normalised to the bin with maximum probability, is shown by reference to the colour-bar

on the right hand side for (b), (c) and (d). The contours show the 95% limits in the

two-dimensional plane.

d. For instance, Fig. 7b has two distinct maxima, the focus-point region on the left-

hand side and the stau co-annihilation region on the right-hand side. If one could

obtain empirical estimates of the total cross-sections to within a factor of about 3

(corresponding to an error of about 0.5 in the log10 value) then measurements of

σstrong and σweak could distinguish between the two mechanisms. There is a overlap

between the one-dimensional projections of the two different regions in either σstrong

or σweak and so measurements of both seem to be required for discrimination. The

probability density of the focus-point region becomes too smeared in the σslepton

direction to appear in the 95% limit bounds in Fig. 7c,d. Experimental measurements

of the cross-sections in Fig. 7 would provide a test of the CMSSM hypothesis. It is

clear from Fig. 7a that σslepton has two isolated probability maxima. The one at
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σslepton < 0 corresponds to the focus point region, where scalar x masses are large.

This region will probably directly produce too few sleptons to be observed at the LHC

and so will not be useful there for discriminating the CMSSM focus point region from

the co-annihilation region unless there is a significant luminosity upgrade [61].

The profile likelihoods of SUSY produc-
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Figure 8: SUSY production cross-

section profile likelihoods. One-sided

95% lower confidence level limits are

shown as calculated from these his-

tograms by the vertical arrows.

tion cross-sections are shown in Fig. 8. In the

figure, “strong” refers to squark/gluino pro-

duction, “weak” to inclusive weak gaugino pro-

duction and “slepton” to direct slepton pro-

duction. By comparison to fig. 7a, we see that

the profile likelihoods generally prefer some-

what larger SUSY production cross-sections

than the Bayesian analysis with REWSB+same

order w = 1 priors. The 95% one-sided lower

confidence level bounds upon them are for 2000

fb for sparton production, 300 fb for weak gaug-

ino production and 80 fb for slepton produc-

tion. This last bound is particularly differ-

ent from the Bayesian analysis since there the

small probability for the focus-point régime,

evidenced by the low bump to the left hand

side of Fig. 7a, was only pushed just above

an integrated posterior pdfs of 5% by volume

effects.

7. Conclusion

This analysis constitutes the first use in a serious physics context of a new “banked”

MCMC proposal function [45]. This new proposal function has allowed us to sample

simultaneously, efficiently and correctly from both signs of µ. The resulting sampling

passed convergence tests and therefore gave reliable estimates of LHC SUSY cross-

section pdfs. MCMCs have also been used to determine the impact of potential

future collider data upon the MSSM [62, 63, 13]. The development of tools such as

the banked proposal MCMC constitutes a goal at least as important as the interesting

physics results derived here. In case they may be of use for future work, we have

placed the samples obtained by the banked MCMC on the internet, with instructions

on how to read them, at the following URL:

http://users.hepforge.org/~allanach/benchmarks/kismet.html

We argued that prior probability distributions that are flat in tan β are less nat-

ural than those that are flat in the more fundamental Higgs potential parameters µ,
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B of the MSSM. We have derived a more natural prior distribution in the form of

Eq. 2.8, which is originally flat in µ, B and also encodes our prejudice that µ and the

SUSY breaking parameters are “of the same order”. There is actually a marginali-

sation over a family of priors, and as such our analysis uses a hierarchical Bayesian

prior distribution. It should be noted that this prior pdf can replace definitions of

fine-tuning in the MSSM Higgs sector. Its use in Bayesian statistics is well-defined,

and we have examined its effect on Bayesian CMSSM analysis. The main effect is to

strongly disfavour the Higgs-pole and focus point dark matter annihilation regions

of CMSSM parameter space. The sparticle masses are then predicted to be probably

lighter than previously thought as a result of the new prior. There is little difference

in the results when one changes the widths of the same order pdfs, but the results

are very different to previous ones in the literature where flat priors in tanβ were

examined. If one rejects the prior flat in the SUSY breaking parameters, as we have

advocated here, our results appear rather robust with respect to changes in the prior.

However, for readers that find the same order priors too strong, one can view the

difference between the flat prior results and those using the same order priors as

a result of uncertainty originating from scarce data. This dependence upon priors

does indicate the need for caution when interpreting our results; constraining data

are currently too scarce to render the posterior pdfs approximately independent of

the prior assumption. We feel that the sensitivity to priors must be studied, and

find the large dependence on priors consistent with something that is intuitively ob-

vious [64]; that a few pieces of indirect data are not sufficient to robustly constrain

a complex model of 8 parameters. The frequentist analysis does not depend on any

prior, but it also does not allow us to inject reasonable assumptions about the natu-

ralness of the theory. A comparison between the likelihood profile and posteriors is

ideal because it contains information about volume effects in the Bayesian analyses.

The frequentist confidence levels on MSSM particle masses are different to Bayesian

credible intervals, but within the same ball-park as each other. Thus we may infer

some rough limits, but to be conservative one might take the least constraining upper

bound by any of the different methods. The lighter sparticles from the new priors

result in more optimistic total SUSY cross-section predictions for the LHC. It would

be interesting to see the footprints of other SUSY breaking models to see whether

the correlations between different cross-sections are a good discriminator [65].

A. Comparison With Previous Literature

The flat-prior results may at first sight seem to be in contradiction with the analysis

of Ellis et al [7], where a preference for light SUSY was found from quite similar global

fits to those in the present paper. They also fit MW , sin2 θl
w(eff) as well as (g − 2)µ,

while using the relic density of dark matter as a constraint. In their paper, Ellis et al

fixed tanβ, and all Standard Model inputs at their central experimental values. For
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every value of M1/2, A0 scanned, m0 is adjusted until the central WMAP3 value of

ΩDMh2 results. The smearing due to the finite error on ΩDMh2 is very small and so it

is argued that this procedure well approximates the full constraints upon parameter

space. We display the resulting constraint on the A0 − M1/2 plane for tan β = 10

and µ > 0 in Fig. 9a. The partial ellipses show the authors’ claimed 68% and 90%

confidence level limits calculated with ∆χ2 = 2.30, 4.61 [7] from the best-fit point,

marked by a cross. Actually, since the confidence level regions are constrained within

a wedge-shape in the figure, the 68% (90%) limits should not necessarily correspond

to ∆χ2 = 2.30(4.61) respectively. The regions shown on the figure should therefore

be re-calculated, by calculating what sort of probability distribution ∆χ2 has when

trapped in such a wedge.
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Figure 9: (a) Reduced parameter space global fit from Ref. [7] for tan β = 10, µ > 0. In

the plot, A0 has a relative minus sign with respect to the definition used in the present

paper, (b) our version of the same fit, marginalised over m0. 68% and 90% confidence level

regions are shown.

In order to emulate these results, we perform a similar but Bayesian analysis

with the MCMC algorithm: all Standard Model inputs are fixed at their central

empirical values, tan β = 10 is fixed and m0, A0, M1/2 are allowed to vary in the

MCMC algorithm in order to fit the combined posterior probability of dark matter

plus other measurements. For this comparison, we choose flat priors in m0 < 1

TeV, M1/2 < 1 TeV and -3 TeV< A0 <3 TeV. The likelihood is calculated as in

section 3. The main conclusion from Fig. 9 is that the two results are similar. If

the correct relationship between ∆χ2 and confidence-level were used in Fig. 9a, the

confidence level region could extend out to higher values of M1/2. We should note

strictly that, being Bayesian confidence regions as compared to frequentist, we do

not exactly compare like with like in Figs. 9a,b but we do expect roughly similar
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confidence regions in the two cases. When we perform a similar fit with a larger

allowed range of m0 < 4 TeV, Fig. 9b deforms due to contributions from h0 and

fixed-point regions but the preference for M1/2 < 800 GeV remains. We conclude

from this that Ellis et al did not scan larger values of m0 where the focus point regime

resides. The procedure of Ellis et al is not suited for including the h0 and fixed-point

regions, since then there is no unique solution of m0 which provides the central value

of ΩDMh2. If we then additionally include smearing due to tan β in Fig. 9b with a

flat prior, the A0-pole region extends the region of valid M1/2 out to higher values

> 1 TeV. Allowing variations of Standard Model input parameters produces further

smearing in the fits until, finally, Fig. 3a is obtained.
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