437 research outputs found
Development of a gas pressure bonded four-pole alternator rotor
Methods were developed for fabrication of a solid four pole alternator rotor by hot isostatic pressure welding. The rotor blanks welded in this program had complex geometrical mating interfaces and were of considerable bulk, being approximately 3-1/2 inches (0.089 meters) in diameter and 14 inches (0.356 meters) long. Magnetic end pieces were machined from AlSl 4340 steel, while the non-magnetic central section was of Inconel 718. Excellent welds were produced which were shown to be responsive to post weld heat treatments which substantially improved joint strength. Prior to welding the rotors, test specimens of complex geometry were welded to demonstrate that complex surfaces with intentional mechanical misfit could be readily joined using HIP welding. This preliminary work demonstrated not only that interface compliance is achieved during welding but that welding pressure is developed in these thick sections sufficient to produce sound joints. Integral weld-heat treatment cycles were developed that permitted the attainment of magnetic properties while minimizing residual stress associated with the allotropic transformation of 4340 steel
Bimetallic junctions
The formation of voids through interdiffusion in bimetallic welded structures exposed to high operating temperatures is inhibited by utilizing an alloy of the parent materials in the junction of the parent materials or by preannealing the junction at an ultrahigh temperature. These methods are also used to reduce the concentration gradient of a hardening agent
Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions
Heavy smokers undergoing screening with low-dose chest CT are affected by
cardiovascular disease as much as by lung cancer. Low-dose chest CT scans
acquired in screening enable quantification of atherosclerotic calcifications
and thus enable identification of subjects at increased cardiovascular risk.
This paper presents a method for automatic detection of coronary artery,
thoracic aorta and cardiac valve calcifications in low-dose chest CT using two
consecutive convolutional neural networks. The first network identifies and
labels potential calcifications according to their anatomical location and the
second network identifies true calcifications among the detected candidates.
This method was trained and evaluated on a set of 1744 CT scans from the
National Lung Screening Trial. To determine whether any reconstruction or only
images reconstructed with soft tissue filters can be used for calcification
detection, we evaluated the method on soft and medium/sharp filter
reconstructions separately. On soft filter reconstructions, the method achieved
F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta,
aortic valve and mitral valve calcifications, respectively. On sharp filter
reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively.
Linearly weighted kappa coefficients for risk category assignment based on per
subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter
reconstructions, respectively. These results demonstrate that the presented
method enables reliable automatic cardiovascular risk assessment in all
low-dose chest CT scans acquired for lung cancer screening
Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis
In patients with coronary artery stenoses of intermediate severity, the
functional significance needs to be determined. Fractional flow reserve (FFR)
measurement, performed during invasive coronary angiography (ICA), is most
often used in clinical practice. To reduce the number of ICA procedures, we
present a method for automatic identification of patients with functionally
significant coronary artery stenoses, employing deep learning analysis of the
left ventricle (LV) myocardium in rest coronary CT angiography (CCTA). The
study includes consecutively acquired CCTA scans of 166 patients with FFR
measurements. To identify patients with a functionally significant coronary
artery stenosis, analysis is performed in several stages. First, the LV
myocardium is segmented using a multiscale convolutional neural network (CNN).
To characterize the segmented LV myocardium, it is subsequently encoded using
unsupervised convolutional autoencoder (CAE). Thereafter, patients are
classified according to the presence of functionally significant stenosis using
an SVM classifier based on the extracted and clustered encodings. Quantitative
evaluation of LV myocardium segmentation in 20 images resulted in an average
Dice coefficient of 0.91 and an average mean absolute distance between the
segmented and reference LV boundaries of 0.7 mm. Classification of patients was
evaluated in the remaining 126 CCTA scans in 50 10-fold cross-validation
experiments and resulted in an area under the receiver operating characteristic
curve of 0.74 +- 0.02. At sensitivity levels 0.60, 0.70 and 0.80, the
corresponding specificity was 0.77, 0.71 and 0.59, respectively. The results
demonstrate that automatic analysis of the LV myocardium in a single CCTA scan
acquired at rest, without assessment of the anatomy of the coronary arteries,
can be used to identify patients with functionally significant coronary artery
stenosis.Comment: This paper was submitted in April 2017 and accepted in November 2017
for publication in Medical Image Analysis. Please cite as: Zreik et al.,
Medical Image Analysis, 2018, vol. 44, pp. 72-8
Тренинг толерантности : учеб.-метод. пособие
A versatile experimental setup is presented for both x‐ray standing waves (XSW) and x‐ray photoemission spectroscopy (XPS) studies in an energy range up to 7 keV. The compact apparatus operates under ultrahigh vacuum and includes in situ sample preparation and characterization techniques. For the XSW scans the incident photon energy is tuned through the Bragg reflection from the sample for ΘB ≊ 90° while measuring the intensity and energy distributions of both the emitted electrons and fluorescence radiation simultaneously. Alternatively, desorbing positive ions can be analyzed as a function of the standing wave phase shift using a time‐of‐flight spectrometer. In addition, energy dependent high‐energy XPS measurements with medium overall energy resolution (ΔE=1.5 eV at 3 keV) can be performed. Selected results obtained at the focused EXAFS II beamline of HASYLAB are shown
Automatic Segmentation, Localization, and Identification of Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks
This paper presents a method for automatic segmentation, localization, and
identification of vertebrae in arbitrary 3D CT images. Many previous works do
not perform the three tasks simultaneously even though requiring a priori
knowledge of which part of the anatomy is visible in the 3D CT images. Our
method tackles all these tasks in a single multi-stage framework without any
assumptions. In the first stage, we train a 3D Fully Convolutional Networks to
find the bounding boxes of the cervical, thoracic, and lumbar vertebrae. In the
second stage, we train an iterative 3D Fully Convolutional Networks to segment
individual vertebrae in the bounding box. The input to the second networks have
an auxiliary channel in addition to the 3D CT images. Given the segmented
vertebra regions in the auxiliary channel, the networks output the next
vertebra. The proposed method is evaluated in terms of segmentation,
localization, and identification accuracy with two public datasets of 15 3D CT
images from the MICCAI CSI 2014 workshop challenge and 302 3D CT images with
various pathologies introduced in [1]. Our method achieved a mean Dice score of
96%, a mean localization error of 8.3 mm, and a mean identification rate of
84%. In summary, our method achieved better performance than all existing works
in all the three metrics
Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting
The paper examines the potential of deep learning to support decisions in financial risk management. We develop a deep learning model for predicting whether individual spread traders secure profits from future trades. This task embodies typical modeling challenges faced in risk and behavior forecasting. Conventional machine learning requires data that is representative of the feature-target relationship and relies on the often costly development, maintenance, and revision of handcrafted features. Consequently, modeling highly variable, heterogeneous patterns such as trader behavior is challenging. Deep learning promises a remedy. Learning hierarchical distributed representations of the data in an automatic manner (e.g. risk taking behavior), it uncovers generative features that determine the target (e.g., trader’s profitability), avoids manual feature engineering, and is more robust toward change (e.g. dynamic market conditions). The results of employing a deep network for operational risk forecasting confirm the feature learning capability of deep learning, provide guidance on designing a suitable network architecture and demonstrate the superiority of deep learning over machine learning and rule-based benchmarks
- …