17 research outputs found

    Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier

    No full text
    The ‘impassable’ Eastern Pacific Barrier (EPB), ca 5000 km of deep water separating the eastern from the central Pacific, is the World's widest marine biogeographic barrier. Sequencing of mitochondrial DNA in 20 reef fish morphospecies encountered on both sides of the barrier revealed cryptic speciation in two. Among the other 18 species only two showed significant differentiation (as revealed by haplotype networks and F(ST) statistics) between the eastern and the central Pacific. Coalescence analyses indicated that genetic similarity in the 18 truly transpacific species resulted from different combinations of ages of most recent invasion and of levels of recurrent gene flow, with estimated times of initial separation ranging from approximately 30 000 to 1 Myr (ago). There is no suggestion of simultaneous interruptions of gene flow among the species. Migration across the EPB was previously thought to be exclusively eastward, but our evidence showed two invasions from east to west and eight cases in which subsequent gene flow possibly proceeded in the same direction. Thus, the EPB is sporadically permeable to propagules originating on either side

    Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution

    Get PDF
    Among shallow water sea urchin genera, Arbacia is the only genus that contains species found in both high and low latitudes. In order to determine the geographical origin of the genus and its history of speciation events, we constructed phylogenies based on cytochrome oxidase I and sperm bindin from all its species. Both the mitochondrial and the nuclear gene genealogies show that Arbacia originated in the temperate zone of the Southern Hemisphere and gave rise to three species in the eastern Pacific, which were then isolated from the Atlantic by the Isthmus of Panama. The mid-Atlantic barrier separated two additional species. The bindin data suggest that selection against hybridization is not important in the evolution of this molecule in this genus. Metz et al. in a previous publication found no evidence of selection on bindin of Arbacia and suggested that this might be due to allopatry between species, which obviated the need for species recognition. This suggestion formed the basis of the conclusion, widely spread in the literature, that the source of selection on sea urchin bindin (where it does occur) was reinforcement. However, the range of Arbacia spatuligera overlaps with that of two other species of Arbacia, and our data show that it is hybridizing with one of them. We found that even in the species that overlap geographically, there are no deviations from selective neutrality in the evolution of bindin

    Widespread association of a Rickettsiales-like bacterium with reef-building corals

    No full text
    White band disease type I (WBD I) has been a major cause of the dramatic decline of Acroporid coral populations throughout the Caribbean during the last two decades, yet the aetiological agent of this disease is unknown. In this study, the bacterial communities associated with both healthy and diseased Acropora species were compared by 16S rDNA analyses. The bacterial communities of both healthy and diseased Acropora spp. were dominated by a single ribotype with 90% identity to a bacterium in the order Rickettsiales. Screening by nested PCR specific to the coral-associated Rickettsiales 1 (CAR1) bacterium showed that this microbe was widespread in both healthy and diseased A. cervicornis and A. palmata corals from 'healthy' (i.e. low WBD I incidence) and 'stressed' reefs (i.e. high WBD I incidence). These results indicate that there were no dramatic changes in the composition of the microbial community associated with WBD I. CAR1 was also associated with non-Acroporid corals of the Caribbean, as well as with two Acroporid corals native to the Pacific. CAR1 was not present in the water column. This bacterium was also absent from preserved Caribbean Acroporid samples collected between 1937 and 1980 before the outbreak of WBD I. These results suggest CAR1 is a relatively new bacterial associate of Acroporids and that a non-bacterial pathogen might be the cause of WBD I
    corecore