13 research outputs found

    The evolution of sperm morphometry in pheasants

    Get PDF
    Postcopulatory sexual selection is thought to be a potent evolutionary force driving the diversification of sperm shape and function across species. In birds, insemination and fertilisation are separated in time and sperm storage increases the duration of sperm female interaction and hence the opportunity for sperm competition and cryptic female choice. We performed a comparative study of 24 pheasant species (Phasianidae, Galliformes) to establish the relative importance of sperm competition and the duration of sperm storage for the evolution of sperm morphometry (i.e. size of different sperm traits). We found that sperm size traits were negatively associated with the duration of sperm storage but were independent of the risk of sperm competition estimated from relative testis mass. Our study emphasises the importance of female reproductive biology for the evolution of sperm morphometry particularly in sperm storing taxa

    Immune-Mediated Change in the Expression of a Sexual Trait Predicts Offspring Survival in the Wild

    Get PDF
    BACKGROUND: The "good genes" theory of sexual selection postulates that females choose mates that will improve their offspring's fitness through the inheritance of paternal genes. In spite of the attention that this hypothesis has given rise to, the empirical evidence remains sparse, mostly because of the difficulties of controlling for the many environmental factors that may covary with both the paternal phenotype and offspring fitness. Here, we tested the hypothesis that offspring sired by males of a preferred phenotype should have better survival in an endangered bird, the houbara bustard (Chlamydotis undulata undulata). METHODOLOGY/PRINCIPAL FINDINGS: We tested if natural and experimentally-induced variation in courtship display (following an inflammatory challenge) predicts the survival of offspring. Chicks were produced by artificial insemination of females, ensuring that any effect on survival could only arise from the transfer of paternal genes. One hundred and twenty offspring were equipped with radio transmitters, and their survival monitored in the wild for a year. This allowed assessment of the potential benefits of paternal genes in a natural setting, where birds experience the whole range of environmental hazards. Although natural variation in sire courtship display did not predict offspring survival, sires that withstood the inflammatory insult and maintained their courtship activity sired offspring with the best survival upon release. CONCLUSIONS: This finding is relevant both to enlighten the debate on "good genes" sexual selection and the management of supportive breeding programs

    Sex peptide receptor-regulated polyandry mediates the balance of pre- and post-copulatory sexual selection in Drosophila

    Get PDF
    Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophil

    A Virus Essential for Insect Host-Parasite Interactions Encodes Cystatins

    No full text
    Cotesia congregata is a parasitoid wasp that injects its eggs in the host caterpillar Manduca sexta. In this host-parasite interaction, successful parasitism is ensured by a third partner: a bracovirus. The relationship between parasitic wasps and bracoviruses constitutes one of the few known mutualisms between viruses and eukaryotes. The C. congregata bracovirus (CcBV) is injected at the same time as the wasp eggs in the host hemolymph. Expression of viral genes alters the caterpillar's immune defense responses and developmental program, resulting in the creation of a favorable environment for the survival and emergence of adult parasitoid wasps. Here, we describe the characterization of a CcBV multigene family which is highly expressed during parasitism and which encodes three proteins with homology to members of the cystatin superfamily. Cystatins are tightly binding, reversible inhibitors of cysteine proteases. Other cysteine protease inhibitors have been described for lepidopteran viruses; however, this is the first description of the presence of cystatins in a viral genome. The expression and purification of a recombinant form of one of the CcBV cystatins, cystatin 1, revealed that this viral cystatin is functional having potent inhibitory activity towards the cysteine proteases papain, human cathepsins L and B and Sarcophaga cathepsin B in assays in vitro. CcBV cystatins are, therefore, likely to play a role in host caterpillar physiological deregulation by inhibiting host target proteases in the course of the host-parasite interaction
    corecore