11 research outputs found

    CK1ε Is Required for Breast Cancers Dependent on β-Catenin Activity

    Get PDF
    Background: Aberrant β\beta-catenin signaling plays a key role in several cancer types, notably colon, liver and breast cancer. However approaches to modulate β\beta-catenin activity for therapeutic purposes have proven elusive to date. Methodology: To uncover genetic dependencies in breast cancer cells that harbor active β\beta-catenin signaling, we performed RNAi-based loss-of-function screens in breast cancer cell lines in which we had characterized β\beta-catenin activity. Here we identify CSNK1E, the gene encoding casein kinase 1 epsilon (CK1ε\varepsilon) as required specifically for the proliferation of breast cancer cells with activated β\beta-catenin and confirm its role as a positive regulator of β\beta-catenin-driven transcription. Furthermore, we demonstrate that breast cancer cells that harbor activated β\beta-catenin activity exhibit enhanced sensitivity to pharmacological blockade of Wnt/β\beta-catenin signaling. We also find that expression of CK1ε\varepsilon is able to promote oncogenic transformation of human cells in a β\beta-catenin-dependent manner. Conclusions/Significance: These studies identify CK1ε\varepsilon as a critical contributor to activated β\beta-catenin signaling in cancer and suggest it may provide a potential therapeutic target for cancers that harbor active β\beta-catenin. More generally, these observations delineate an approach that can be used to identify druggable synthetic lethal interactions with signaling pathways that are frequently activated in cancer but are difficult to target with the currently available small molecule inhibitors

    COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

    Full text link
    Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies
    corecore