1,520 research outputs found

    Inhibition of the MEK1/ERK pathway reduces arachidonic acid release independently of cPLA(2) phosphorylation and translocation

    Get PDF
    BACKGROUND: The 85-kDa cytosolic phospholipase A(2) (cPLA(2)) mediates arachidonic acid (AA) release in MDCK cells. Although calcium and mitogen-activated protein kinases regulate cPLA(2), the correlation of cPLA(2) translocation and phosphorylation with MAPK activation and AA release is unclear. RESULTS: MEK1 inhibition by U0126 inhibited AA release in response to ATP and ionomycin. This directly correlated with inhibition of ERK activation but not with phosphorylation of cPLA(2) on Ser(505), which was only partially inhibited by ERK inhibition. Inhibition of AA release by U0126 was still observed when stoichiometric phosphorylation of cPLA(2) on Ser(505) was maintained by activating p38 with anisomycin. Translocation kinetics of wild-type cPLA(2) and cPLA(2) containing S505A or S727A mutations to Golgi were similar in response to ATP and ionomycin and were not affected by U0126. CONCLUSIONS: These results suggest that the ability of cPLA(2) to hydrolyze membrane phospholipid is reduced by inhibition of the MEK1/ERK pathway and that the reduction in activity is independent of cPLA(2) phosphorylation and translocation to membrane. The results also demonstrate that cPLA(2) mutated at the phosphorylation sites Ser(505) and Ser(727) translocated with similar kinetic as wild-type cPLA(2)

    Cytosolic Phospholipase A2Ī± and Eicosanoids Regulate Expression of Genes in Macrophages Involved in Host Defense and Inflammation

    Get PDF
    Acknowledgments: We thank Dr. Robert Barkley and Charis Uhlson for mass spectrometry analysis. Funding: This work was supported by grants from the National Institutes of Health HL34303 (to C.C.L., R.C.M. and D.L.B), DK54741 (to J.V.B.), GM5322 (to D.L.W.) and the Wellcome Trust (to N.A.R.G. and G.D.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12.

    Get PDF
    Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner

    Novel translocation responses of cytosolic phospholipase A2Ī± fluorescent proteins

    Get PDF
    AbstractCytosolic phospholipase A2 (cPLA2)Ī± responds to the rise in cytosolic Ca2+ ([Ca2+]i) attending cell stimulation by moving to intracellular membranes, releasing arachidonic acid (AA) from these membranes, and thereby initiating the synthesis of various lipid mediators. Under some conditions, however, cPLA2Ī± translocation occurs without any corresponding changes in [Ca2+]i. The signal for such responses has not been identified. Using confocal microscopy to track fluorescent proteins fused to cPLA2Ī± or cPLA2Ī±'s C2 domain, we find that AA mimics Ca2+ ionophores in stimulating cPLA2Ī± translocations to the perinuclear ER and to a novel site, the lipid body. Unlike the ionophores, AA acted independently of [Ca2+]i rises and did not translocate the proteins to the Golgi. AA's action did not involve its metabolism to eicosanoids or acylation into cellular lipids. Receptor agonists also stimulated translocations targeting lipid bodies. We propose that AA is a signal for Ca2+-independent cPLA2Ī± translocation and that lipid bodies are common targets of cPLA2Ī± and contributors to stimulus-induced lipid mediator synthesis

    Arachidonate Metabolism and the Signaling Pathway of Induction of Apoptosis by Oxidized LDL/Oxysterol

    Get PDF
    Owing at least in part to oxysterol components that can induce apoptosis, oxidized LDL (oxLDL) is cytotoxic to mammalian cells with receptors that can internalize it. Vascular cells possess such receptors, and it appears that the apoptotic response of vascular cells to the oxysterols borne by oxLDL is an important part of the atherogenic effects of oxLDL. Thus, an analysis of the signaling pathway of apoptotic induction by oxysterols is of value in understanding the development of atherosclerotic plaque. In a prior study, we demonstrated an induction of calcium ion flux into cells treated with 25-hydroxycholesterol (25-OHC) and showed that this response is essential for 25-OHC-induced apoptosis. One possible signal transduction pathway initiated by calcium ion fluxes is the activation of cytosolic phospholipase A2 (cPLA2). In the current study, we demonstrate that activation of cPLA2 does occur in both macrophages and fibroblasts treated with 25-OHC or oxLDL. Activation is evidenced by 25-OHC-induced relocalization of cPLA2 to the nuclear envelope and arachidonic acid release. Loss of cPLA2 activity, either through genetic knockout in mice, or by treatment with a cPLA2 inhibitor, results in an attenuation of arachidonic acid release as well as of the apoptotic response to oxLDL in peritoneal macrophages or to 25-OHC in cultured fibroblast and macrophage cell lines

    Regulation of Cytosolic Phospholipase A 2 Activation and Cyclooxygenase 2 Expression in Macrophages by the Ī²-Glucan Receptor

    Get PDF
    Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression

    Regulation of Cytosolic Phospholipase a\u3csub\u3e2\u3c/sub\u3e Activation and Cyclooxygenase 2 Expression in Macrophages by the Ī²-Glucan Receptor

    Get PDF
    Phagocytosis of non-opsonized microorganisms bymacrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A2 is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the Ī²-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-Ī²-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C4 production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2-/- macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-Ī²-D-glucan. The results suggest that cytosolic phospholipase A2 activation triggered by the Ī²-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression
    • ā€¦
    corecore