136 research outputs found

    FUSE: Front-End User Framework for O/S Abstraction of Hardware Accelerators

    Full text link
    Abstract—SoCs can be implemented on a single FPGA, offering designers a unique opportunity for Embedded Sys-tems. Instead of defining a fixed architecture early in the design process, the reconfigurable platform allows architec-tural redesign to meet the system’s specific needs. However, the ability to instantiate new modules in the reconfigurable hardware provides a unique set of challenges for integration, particularly to the software (SW) designer. Specifically, the Operating System (OS) cannot automatically abstract these platform changes without redesign. In this paper, we present FUSE, a framework for HW accelerator abstraction that provides: 1) transparency to the SW designer at the application level; and 2) OS support for easy HW accelerator integration. We illustrate FUSE as an API for an embedded Linux OS with POSIX threads on Xilinx’s MicroBlaze on a Virtex5. For three different applications and HW accelerators, we achieve performance speedups ranging from 6.4-37x. I

    A System Design Methodology for Reducing System Integration Time and Facilitating Modular Design Verification

    Full text link
    This paper provides a realistic case study of using the previously introduced SIMPPL system architectural model, which fixes the physical interface and communication pro-tocols between processing elements (PEs) using PE-specific SIMPPL controllers. The implementation of a real-time MPEG-1 video decoder using SIMPPL provides a practical demonstration of how the complexity of system-level design issues are reduced by enabling rapid system-level integra-tion and on-chip verification. The adaptation of the MPEG-1 PEs into the SIMPPL framework combined with the system-level integration was accomplished in 72.5 hours, which is only 4.5 % of the overall system design time, instead of the more typical system integration times that can be as much as 30 % of the design time. 1

    Association between circulating levels of sex steroid hormones and esophageal adenocarcinoma in the FINBAR Study

    Get PDF
    Funding: The study was supported by NIH Intramural Research Program, National Cancer Institute; Cancer Focus Northern Ireland (formerly the Ulster Cancer Foundation); the Northern Ireland R&D office; and the Health Research Board, Ireland. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    A functional analysis of the pyrimidine catabolic pathway in Arabidopsis

    Get PDF
    Reductive catabolism of pyrimidine nucleotides occurs via a three-step pathway in which uracil is degraded to β-alanine, CO2 and NH3 through sequential activities of dihydropyrimidine dehydrogenase (EC 1.3.1.2, PYD1), dihydropyrimidinase (EC 3.5.2.2, PYD2) and β-ureidopropionase (EC 3.5.1.6, PYD3).A proposed function of this pathway, in addition to the maintenance of pyrimidine homeostasis, is the recycling of pyrimidine nitrogen to general nitrogen metabolism. PYD expression and catabolism of [2-14C]-uracil are markedly elevated in response to nitrogen limitation in plants, which can utilize uracil as a nitrogen source.PYD1, PYD2 and PYD3 knockout mutants were used for functional analysis of this pathway in Arabidopsis. pyd mutants exhibited no obvious phenotype under optimal growing conditions. pyd2 and pyd3 mutants were unable to catabolize [2-14C]-uracil or to grow on uracil as the sole nitrogen source. By contrast, catabolism of uracil was reduced by only 40% in pyd1 mutants, and pyd1 seedlings grew nearly as well as wild-type seedlings with a uracil nitrogen source. These results confirm PYD1 function and suggest the possible existence of another, as yet unknown, activity for uracil degradation to dihydrouracil in this plant.The localization of PYD-green fluorescent protein fusions in the plastid (PYD1), secretory system (PYD2) and cytosol (PYD3) suggests potentially complex metabolic regulation

    Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    Get PDF
    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis

    Subtype-Specific and Co-Occurring Genetic Alterations in B-cell Non-Hodgkin Lymphoma

    Get PDF
    B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL, such as diffuse large B-cell lymphoma, have been comprehensively interrogated at the genomic level, but rarer subtypes, such as mantle cell lymphoma, remain less extensively characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared using the same methodology to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 685 B-NHL tumors at high depth, including diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, and Burkitt lymphoma. We identified conserved hallmarks of B-NHL that were deregulated in the majority of tumors from each subtype, including frequent genetic deregulation of the ubiquitin proteasome system. In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations and DNA copy number alterations. The cumulative burden of mutations within a single cluster were more discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic cooperation that contribute to disease etiology. We therefore provide the first cross-sectional analysis of mutations and DNA copy number alterations across major B-NHL subtypes and a framework of co-occurring genetic alterations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis

    Active, but not passive cigarette smoking was inversely associated with mammographic density

    Get PDF
    The opposing carcinogenic and antiestrogenic properties of tobacco smoke may explain why epidemiologic studies have not consistently reported positive associations for active smoking and breast cancer risk. A negative relation between mammographic density, a strong breast cancer risk factor, and active smoking would lend support for an antiestrogenic mechanism. We used multivariable linear regression to assess the associations of active smoking and secondhand smoke (SHS) exposure with mammographic density in 799 pre- and early perimenopausal women in the Study of Women’s Health Across the Nation (SWAN). We observed that current active smoking was associated with 7.2% lower mammographic density, compared to never active smoking and no SHS exposure (p = 0.02). Starting to smoke before 18 years of age and having smoked ≥20 cigarettes/day were also associated with statistically significantly lower percent densities. Among nulliparous women having smoked ≥20 cigarettes/day was associated with 23.8% lower density, compared to having smoked ≤9 cigarettes/day (p < 0.001). Our findings support the hypothesis that tobacco smoke exerts an antiestrogenic effect on breast tissue, but counters the known increased risk of breast cancer with smoking prior to first full-term birth. Thus, our data suggest that the antiestrogenic but not the carcinogenic effects of smoking may be reflected by breast density
    corecore