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SUPPLEMENTARY METHODS 
 
Target Selection for LymphoSeq 
A catalogue of somatic mutations in 670 B-cell malignancies was compiled from previous high-

throughput sequencing studies with sufficient quality and variant reporting, and with germline 

controls, that were available during the design phase in 2014. These included 53 Mantle cell 

lymphoma (MCL)(1-3), 82 Burkitt’s lymphoma (BL)(4, 5), 155 Diffuse large B-cell lymphoma 

(DLBCL)(6-9), 65 Follicular lymphoma (FL)(6, 10-13), 214 Chronic lymphocytic leukemia 

(CLL)(14-17), 36 Marginal zone lymphoma(18, 19), 38 Multiple myeloma(20) (MM), 10 

Waldenstrom’s macroglobulinemia (WM)(21), 9 Primary mediastinal large B-cell lymphoma(22) 

(PMBCL), 8 Primary central nervous system lymphoma(23) (PCNSL). Genes that were mutated 

in >2% of any individual subtype (with WM, PMBCL and PCNSL being grouped together as rare 

lymphomas), and that were not previously identified as genes with recurrent false-positive 

mutation calls(10) (MUC4, RPTN, PRH1, DSPP, C9ORF96, NBPF1, MUC6, MAML2, MAN1B1, 

C9ORF84, PDE4DIP, PTPRN2, GPC1, TBP, PKP2, KIAA1683, TTC7B, OVOS2), were selected 

for targeting by hybrid capture. This resulted in the coding and untranslated regions of 380 genes 

(Table S2) totaling 3,232,925 bp. 

 

Detailed Next Generation Sequencing Methods 
Library Preparation. Next generation sequencing libraries were prepared from 100 – 1000ng of 

genomic DNA (gDNA). High molecular weight gDNA was sheared by sonication in a Covaris S220 

or M220 instrument (Covaris Inc.) to obtain an average molecular weight of 150-200bp. Sheared 

DNA was cleaned up with Ampure Beads (Beckman Coulter), and libraries prepared using Hyper 

Prep kits (KAPA Biosystems), according to the manufacturer’s protocol except for an overnight 

ligation of adapters at 16˚C. A maximum of 8 cycles of PCR was performed during library 

preparation (mean = 6 cycles). TruSeq adapters (Bioo Scientific) were utilized at the 

recommended ratio to input DNA. Library quality was assessed using TapeStation High-

Sensitivity DNA 1000 (Agilent) and quantified by Qubit (Life Technologies). 

Hybrid capture and sequencing. Libraries were 12-plexed in equal quantities and a 1µg of pooled 

libraries were enriched by hybrid capture using a Nimblegen SeqCap EZ Custom reagent 

(Roche), according to the manufacturer’s protocol. Each capture pool was sequenced on a single 

lane of a HiSeq 2500 in high output mode using 2 x 100bp at the Hudson Alpha Institute for 

Biotechnology. A total of 2.06 Tera-base-pairs of sequencing data was produced. The average 
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on-target rate and sequencing depth of the 685 samples presented in this study were 81.3% 

(range, 71.7% – 92.5%) and 624X (range, 101X – 1785X), respectively, determined as per below. 

Variant calling. Raw FASTQ files were assessed for quality using FASTQC. Samples with high 

quality metrics were run through our in-house pipeline. FASTQ files were (i) aligned to the human 

genome (hg19) using BWA-Mem(24), (ii) deduplicated using Picard MarkDuplicates, (iii) realigned 

around InDels using GATK(25), and (iv) recalibrated by base score using GATK(25). On-target 

rate and coverage over the targeted region were calculated by Picard CalculateHSMetrics. Only 

samples with >100X average coverage were utilized. If additional sequencing was required to 

obtain sufficient coverage, bam files from the same sample were merged using BamTools 

Mappings Merger following alignment. Variants were called by GATK Unified Genotyper and 

VarScan2. Only variants called by both tools were retained, which we have previously shown to 

provide a sensitivity of 96.7% and specificity of 92.9%(11). All variants were annotated using 

SeattleSeq(26). 

AID mutations. Mutations were defined as products of AID activity if the wild-type allele was a 

cytosine within the context of a WRCY motif, as previously described(11). These data are reported 

in Table S5 as the total number of mutations in the coding sequence of each gene that fit this 

criteria. 

Filtering of repetitive regions and potential germline variants. To avoid mapping artifacts in 

repetitive regions, all variants within RepeatMasker or tandemRepeat annotated regions were 

filtered from the dataset. All genes selected for capture had prior evidence of somatic mutation 

from whole exome or whole genome sequencing studies (see ‘Target Selection for Hybrid 

Capture’ section). In addition, all variants in dbSNP build 32 were removed, and all mutation 

hotspots (defined below) were manually searched in the ExAC browser(27) containing whole 

exome sequencing of 60,706 individuals. Genes with mutation hotspots present in ≥1 healthy 

individual were filtered from the dataset to remove the chance of these variants corresponding to 

a germline polymorphism. Mutation frequencies of significantly mutated genes (MutSigCV, below) 

were compared between fresh/frozen and FFPE tumors for BL and MCL using a Fisher exact test. 

No significant differences were detected, therefore filtering was not performed using this criteria. 

MutSig2CV. MAF files containing filtered variants were analyzed by MutSig2CV(28). This analysis 

was performed for the data set as a whole, and for the four major subtypes individually (DLBCL, 

BL, FL and MCL). Genes that reached a significance of Q<0.25 in any one of these analyses were 

included, as well as genes that did not reach this threshold but have a well-defined role in 

lymphoma and are targets of somatic hypermutation (eg. BCL2 and BCL6; Table S5).  
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DNA copy number and GISTIC2 analysis. Genome-wide DNA copy number profiles were 

determined from mapped, realigned, sorted, deduplicated bam files using CopyWriteR(29). For 

the generation of CopywriteR library folder we utilized 100kb bins in hg19 assembly with contigs 

with a prefix of 'chr' [preCopywriteR (bin.size=100000, ref.genome='hg19', prefix='chr')]. For the 

identification of CNAs we used “input vs. none” [CopywriteR(sample.control, destination.folder, 

reference.folder, bp.param, capture.regions.file)], where sample.control is generated by 

data.frame(sample=[input_bam], control=[input_bam]), reference.folder is the folder generated by 

preCopywriteR above, bp.param involves parallelism, and capture.regions.file is the BED file 

containing the LymphoSeq panel's capture regions. Segmented data were analyzed using 

GISTIC2(30) in the GenePattern(31) environment, with copy number thresholds of 0.2 and marker 

number of 100. Peaks were considered to be significant if they had a residual Q-value < 0.1, to 

account for the significance in neighboring peaks. The gene-level data from GISTIC2 analysis 

have been uploaded to cBioPortal. The genes within each peak were used for integrative analysis 

with matched gene expression profiling data (below) to define the likely drivers of each alteration. 

For validation, DNA copy number alterations of genes shown in Figure 3 were evaluated in 

previously reported SNP microarray data from 85 BL, 694 DLBCL, 404 FL and 206 MCL. For 

BL(32), DLBCL(33, 34) and FL(35), the combined analysis of these datasets have been 

previously reported. For MCL, high-resolution (>200,000 markers) Affymetrix SNP microarray or 

Agilent CGH array DNA number data were downloaded for 206 tumors from the gene expression 

omnibus (GSE12906, GSE18820, GSE42854, GSE46969) and probe-level data segmented 

using the cbs tool in GenePattern(31). Gene level DNA copy number was calculated from 

segmented data using GISTIC2, and reported as copy loss or gain if absolute DNA copy number 

was <1.8 or >2.2, respectively, in line with the thresholds used for GISTIC analysis of the NGS 

cohort. Heatmaps were generated using the GENE-E tool.  

 

Identification of B-NHL hallmarks. A gene list was created that included all genes that were 

significantly mutated, as determined by MutSig2CV, and/or targeted by DNA copy number gain 

or loss, as determined by GISTIC2 and integrative analysis. This gene list was interrogated using 

the ‘Functional Annotation Clustering’ function of DAVID(36). This identified 41 clusters of 

significantly enriched pathways, which were grouped together according to functional 

relatedness. 

Assessment of co-association and clustering. Genetic alterations that were present in ≥5% of any 

major histologic subtype (BL, DLBCL, FL, MCL) were assessed for mutual co-association or 

exclusion using a Fisher exact test corrected for multiple hypothesis testing by the Benjamini-
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Hochberg method (Table S14). Co-association q-values were transformed by log10 and 

directionality (co-association assigned as positive values, exclusion as negative values) and then 

a matrix of transformed values was clustered in GENE-E using Pearson’s correlation coefficient 

with complete linkage. Genes within the clusters reported in this study were compared to those 

from other studies (Lacy, Chapuy, Wright) using a Fisher exact test. DNA copy number alterations 

were omitted for this comparison due to absence (Lacy) or differences in the nomenclature used 

(Wright). 

 
Gene Expression Analysis 
Affymetrix U133 plus 2.0 gene expression microarray data were available for 284 tumors from the 

University of Nebraska Medical Center (Table S1)(37-39). Raw cel files were RMA normalized 

using the ExpressionFileCreator module of GenePattern(31), and quality checked for batch 

effects by unsupervised clustering of the 3,000 most variably expressed genes across the dataset.  

Integrative analysis of DNA copy number alterations. Integrative analysis was performed using 

tumor subsets with ≥3 tumors with a given copy number alterations. If tumor subtypes did not 

harbor the copy number alteration of interest, they were excluded so as not to confound the 

analysis with subtype-specific gene expression differences. For each DNA copy number 

alteration, the expression of genes within the peak was compared between diploid and gain/loss 

tumors using a Student’s T-test corrected for multiple hypothesis testing with a Benjamini-

Hochberg correction. Genes with a directionality of change matching the DNA copy number 

alteration type (i.e. increased expression with DNA copy gain, decreased expression with DNA 

copy loss) and a Q-value < 0.25 were considered significant.  

Molecular Burkitt lymphoma (mBL) classification. For mBL classification, we built a Bayesian 

classifier using previously published dataset(40). The model was created on the discovery set 

from the original paper and evaluated on the test set. Classifications based upon our model had 

minor differences to the originally reported classification, primarily in reducing the number of 

unclassified tumors, and improved upon the significance in overall survival difference between 

mBL and non-mBL subgroups (Figure S6). We therefore applied this model to the UNMC dataset, 

including DLBCL, BL and HGBL-NOS tumors (n=159). 

Cell of origin subtyping. For COO subtyping, we utilized a previously described 140 gene 

Bayesian classifier(41). This classification was applied to non-mBL tumors from the molecular 

Burkitt classifier, and overall survival assessed in the subgroups as a sanity check (Figure S6).  
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Data Sharing. All gene expression data has been consolidated under a single Gene Expression 

Omnibus Accession (GSE132929). Mutation, DNA copy number alteration, translocation and 

gene expression data have been uploaded to cBioPortal for easy access 

(https://www.cbioportal.org/study/summary?id=mbn_mdacc_2013). Raw next generation 

sequencing data will be made available to investigators at academic or not-for-profit research 

institutions upon reasonable request.  
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Figure S1: A schematic overview of the study design.  
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Figure S2: Validation of CopyWriteR DNA copy number calls. DNA copy number calculated 

from off-target NGS reads by CopyWriteR was compared to that calculated using Affymetrix 250K 

Nsp SNP microarrays for 3 FL tumors with available data. The copy number calls were highly 

concordant with the exception of 4 repetitive regions (arrows) that were identified as copy number 

losses by CopyWriteR, but not in the SNP microarray data. These regions were masked for the 

GISTIC2 analysis. 
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Figure S3: Spectrum of mutational burden and copy number aberrant genome. A) 
Mutational burden was calculated for the whole exome and from LymphoSeq targeted regions 

using previously published whole-exome data(11), which showed a significant correlation. B) The 

mutational burden, AID-driven mutational burden, and percentage of copy number aberrant 

genome are shown for each tumor grouped by diagnosis. (*p<0.05, **p<0.01, ***p<0.001) 
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Figure S4: GISTIC and integrative analysis. A standard GISTIC plot for figure 2A is shown on 

the top left. Individual violin plots for the integrative analysis of genes appearing in figure 3 are 

also provided, colored by whether the gene is targeted by copy loss (blue) or copy gain (red). 
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Figure S5: Comparison of DNA copy number alteration frequencies between NGS- and SNP 
microarray-based copy number analysis. A) A heatmap shows the absolute DNA copy number 

of genes shown in Figure 3, as determined by SNP microarray analysis of 85 BL, 694 DLBCL, 

404 FL and 206 MCL tumors. These same genes show frequent DNA copy number alterations in 

this independent cohort, as measured by SNP microarray. B-E) The frequencies of DNA copy 

number alterations for genes shown in Figure 3 are compared between NGS-based and SNP 

microarray-based DNA copy number analysis of independent cohorts. The frequencies 

significantly correlate in BL (B; Pearson’s correlation p-value < 0.0001, r = 0.8635), DLBCL (C; 

Pearson’s correlation p-value < 0.0001, r = 0.8519), FL (D; Pearson’s correlation p-value < 

0.0001, r = 0.9233), and MCL (E; Pearson’s correlation p-value < 0.0001, r = 0.9683), providing 

validation of the NGS-based approach for DNA copy number analysis.  
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Figure S6: Lollipop plots for select genes. 
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Figure S7: Molecular classification of UNMC tumors. A) Application of the molecular Burkitt 

lymphoma (mBL) Bayesian classifier to the tumors from the UNMC cohort. B) Application of the 

previously described cell of origin Bayesian classifier(41) to the UNMC cohort. C) Progression-

free survival of CHOP-treated patients according to their tumor’s molecular classification. D) 
Overall survival of CHOP-treated patients according to their tumor’s molecular classification. 
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