308 research outputs found
Computational Identification of Four Spliceosomal snRNAs from the Deep-Branching Eukaryote Giardia intestinalis
Funding: Marsden Fund New Zealand Allan Wilson Centre The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.RNAs processing other RNAs is very general in eukaryotes, but is not clear to what extent it is ancestral to eukaryotes. Here
we focus on pre-mRNA splicing, one of the most important RNA-processing mechanisms in eukaryotes. In most eukaryotes
splicing is predominantly catalysed by the major spliceosome complex, which consists of five uridine-rich small nuclear
RNAs (U-snRNAs) and over 200 proteins in humans. Three major spliceosomal introns have been found experimentally in
Giardia; one Giardia U-snRNA (U5) and a number of spliceosomal proteins have also been identified. However, because of
the low sequence similarity between the Giardia ncRNAs and those of other eukaryotes, the other U-snRNAs of Giardia had
not been found. Using two computational methods, candidates for Giardia U1, U2, U4 and U6 snRNAs were identified in this
study and shown by RT-PCR to be expressed. We found that identifying a U2 candidate helped identify U6 and U4 based on
interactions between them. Secondary structural modelling of the Giardia U-snRNA candidates revealed typical features of
eukaryotic U-snRNAs. We demonstrate a successful approach to combine computational and experimental methods to
identify expected ncRNAs in a highly divergent protist genome. Our findings reinforce the conclusion that spliceosomal
small-nuclear RNAs existed in the last common ancestor of eukaryotes
Stratospheric response to the 11-year solar cycle: Breaking planetary waves, internal reflection and resonance
Breaking planetary waves (BPWs) affect stratospheric dynamics by reshaping the waveguides, causing internal wave reflection and preconditioning sudden stratospheric warmings. This study examines observed changes in BPWs during the northern winter due to enhanced solar forcing and the consequent effect on the seasonal development of the polar vortex.
During the period 1979-2014, solar-induced changes in BPWs first observed in the uppermost stratosphere. High solar forcing was marked by sharpening of the potential vorticity (PV) gradient at 30-45°N, enhanced wave absorption at high latitudes and a reduced PV gradient between these regions. These anomalies instigated an equatorward shift of the upper stratospheric waveguide and enhanced downward wave reflection at high latitudes. The equatorward refraction of reflected waves from the polar upper stratosphere then led to enhanced wave absorption at 35-45°N, 7-20 hPa, indicative of a widening of the middle stratospheric surf zone. The stratospheric waveguide was thus constricted at ~45-60°N, 5-10 hPa in early Boreal winter; reduced upward wave propagation through this region resulted in a stronger upper-stratospheric westerly jet. From January, the regions with enhanced BPWs acted as “barriers” for subsequent upward and equatorward wave propagation. As the waves were trapped within the stratosphere, zonal wavenumber 2-3 anomalies were reflected poleward from the stratospheric surf zone. Resonant excitation of some of these reflected waves resulted in rapid growth of wave disturbances and a more disturbed polar vortex in late winter. These results provide a process-orientated explanation for the observed solar cycle signal. They also highlight the importance of nonlinearity in the processes that drive the stratospheric response to external forcing
Repeatability of the timed 25-foot walk test for individuals with multiple sclerosis
Objective: The purpose of this study was to determine if there is a practice effect present in the timed 25-foot walk in ambulatory individuals with multiple sclerosis.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Mobile phones support adherence and retention of indigenous participants in a randomised controlled trial: strategies and lessons learnt
BackgroundEnsuring adherence to treatment and retention is important in clinical trials, particularly in remote areas and minority groups. We describe a novel approach to improve adherence, retention and clinical review rates of Indigenous children.MethodsThis descriptive study was nested within a placebo-controlled, randomised trial (RCT) on weekly azithromycin (or placebo) for 3-weeks. Indigenous children aged ≤24-months hospitalised with acute bronchiolitis were recruited from two tertiary hospitals in northern Australia (Darwin and Townsville). Using mobile phones embedded within a culturally-sensitive approach and framework, we report our strategies used and results obtained. Our main outcome measure was rates of adherence to medications, retention in the RCT and self-presentation (with child) to clinic for a clinical review on day-21.ResultsOf 301 eligible children, 76 (21%) families declined participation and 39 (13%) did not have access to a mobile phone. 186 Indigenous children were randomised and received dose one under supervision in hospital. Subsequently, 182 (99%) children received dose two (day-7), 169 (93%) dose three (day-14) and 180 (97%) attended their clinical review (day-21). A median of 2 calls (IQR 1–3) were needed to verify adherence. Importantly, over 97% of children remained in the RCT until their clinical endpoint at day-21.ConclusionsIn our setting, the use of mobile phones within an Indigenous-appropriate framework has been an effective strategy to support a clinical trial involving Australian Indigenous children in urban and remote Australia. Further research is required to explore other applications of this approach, including the impact on clinical outcomes
Using contractual incentives in district nursing in the English NHS: results from a qualitative study
© 2018 The author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Since 2008, health policy in England has been focusing increasingly on improving quality in healthcare services. To ensure quality improvements in community nursing, providers are required to meet several quality targets, including an incentive scheme known as Commissioning for Quality and Innovation (CQUIN). This paper reports on a study of how financial incentives are used in district nursing, an area of care which is particularly difficult to measure and monitor
2005 AAPP Monograph Series
The African American Professors Program (AAPP) at the University of South Carolina is proud to publish the fifth edition of its annual monograph series. The program recognizes the significance of offering its scholars avenue to engage actively in research and publish papers related thereto. Parallel with the publication of their refereed manuscripts is the opportunity to gain visibility among scholars throughout institutions worldwide.
Scholars who have contributed manuscripts for this monograph are to be commended for adding this additional responsibility to their academic workload. Writing across disciplines adds to the intellectual diversity of these papers. From neophytes, relatively speaking, to an array of very experienced individuals, the chapters have been researched and comprehensively written.
Founded in 1997 through the Department of Educational Leadership and Policies in the College of Education, AAPP was designed to address the underrepresentation of African American professors on college and university campuses. Its mission is to expand the pool of these professors in critical academic and research areas. Sponsored by the University of South Carolina, the W. K. Kellogg Foundation, and the South Carolina General Assembly, the program recruits doctoral students for disciplines in which African Americans currently are underrepresented among faculty in higher education.
The continuation of this monograph series is seen as responding to a window of opportunity to be sensitive to an academic expectation of graduates as they pursue career placement and, at the same time, one that allows for the dissemination of AAPP products to a broader community. The importance of this monograph series has been voiced by one of our 2002 AAPP graduates, Dr. Shundele LaTjuan Dogan, a recent Administrative Fellow at Harvard University and now a Program Officer for the Southern Education Foundation, Atlanta, Georgia. Dr. Dogan wrote: One thing in particular that I want to thank you for is having the African American Professors Program scholars publish articles for the monograph. I have to admit that writing the articles seemed like extra work at the time. However, in my recent interview process, organizations have asked me for samples of my writing. Including an article from a published monograph helped to make my portfolio much more impressive. You were \u27right on target\u27 in having us do the monograph series. (MPP 2003 Monograph, p. xi)
The African American Professors Program offers this 2005 publication as a contribution to its readership and hopes that you will be inspired by this select group of manuscripts.
John McFadden, Ph.D.
The Benjamin Elijah Mays Professor
Director, African American Professors Program
University of South Carolinahttps://scholarcommons.sc.edu/mcfadden_monographs/1007/thumbnail.jp
Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis.
BACKGROUND: Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS: Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS: The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015)
Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report
The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials.
The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically.
As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health.
Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel.
Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information
- …