146 research outputs found

    Helicobacter hepaticus Infection Promotes Hepatitis and Preneoplastic Foci in Farnesoid X Receptor (FXR) Deficient Mice

    Get PDF
    Farnesoid X receptor (FXR) is a nuclear receptor that regulates bile acid metabolism and transport. Mice lacking expression of FXR (FXR KO) have a high incidence of foci of cellular alterations (FCA) and liver tumors. Here, we report that Helicobacter hepaticus infection is necessary for the development of increased hepatitis scores and FCA in previously Helicobacter-free FXR KO mice. FXR KO and wild-type (WT) mice were sham-treated or orally inoculated with H. hepaticus. At 12 months post-infection, mice were euthanized and liver pathology, gene expression, and the cecal microbiome were analyzed. H. hepaticus induced significant increases hepatitis scores and FCA numbers in FXR KO mice (P<0.01 and P<0.05, respectively). H. hepaticus altered the beta diversity of cecal microbiome in both WT and FXR KO mice compared to uninfected mice (P<0.05). Significant upregulation of β-catenin, Rela, Slc10a1, Tlr2, Nos2, Vdr, and Cyp3a11 was observed in all FXR KO mice compared to controls (P<0.05). Importantly, H. hepaticus and FXR deficiency were necessary to significantly upregulate Cyp2b10 (P<0.01). FXR deficiency was also a potent modulator of the cecal microbiota, as observed by a strong decrease in alpha diversity. A significant decrease in Firmicutes, particularly members of the order Clostridiales, was observed in FXR KO mice (P<0.05 and FDR<5%, ANOVA). While FXR deficiency strongly affects expression of genes related to immunity and bile acid metabolism, as well as the composition of the microbiome; however, its deficiency was not able to produce significant histopathological changes in the absence of H. hepaticus infection.National Institutes of Health (U.S.) (NIH R01 OD011141)National Institutes of Health (U.S.) (NIH T32 OD010978)National Institutes of Health (U.S.) (NIH P30 ES002109)National Institutes of Health (U.S.) (P01 CA026731

    Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization

    Get PDF
    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes – survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%–0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10[superscript tm1Cgn] mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA, providing new insights into the role of T6SS in C. jejuni pathogenesis

    Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis

    Get PDF
    Objectives: Gastric colonisation with intestinal flora (IF) has been shown to promote Helicobacter pylori (Hp)-associated gastric cancer. However, it is unknown if the mechanism involves colonisation with specific or diverse microbiota secondary to gastric atrophy. Design: Gastric colonisation with Altered Schaedler's flora (ASF) and Hp were correlated with pathology, immune responses and mRNA expression for proinflammatory and cancer-related genes in germ-free (GF), Hp monoassociated (mHp), restricted ASF (rASF; 3 species), and specific pathogen-free (complex IF), hypergastrinemic INS-GAS mice 7 months postinfection. Results: Male mice cocolonised with rASFHp or IFHp developed the most severe pathology. IFHp males had the highest inflammatory responses, and 40% developed invasive gastrointestinal intraepithelial neoplasia (GIN). Notably, rASFHp colonisation was highest in males and 23% developed invasive GIN with elevated expression of inflammatory biomarkers. Lesions were less severe in females and none developed GIN. Gastritis in male rASFHp mice was accompanied by decreased Clostridum species ASF356 and Bacteroides species ASF519 colonisation and an overgrowth of Lactobacillus murinus ASF361, supporting that inflammation-driven atrophy alters the gastric niche for GI commensals. Hp colonisation also elevated expression of IL-11 and cancer-related genes, Ptger4 and Tgf-β, further supporting that Hp infection accelerates gastric cancer development in INS-GAS mice. Conclusions: rASFHp colonisation was sufficient for GIN development in males, and lower GIN incidence in females was associated with lower inflammatory responses and gastric commensal and Hp colonisation. Colonisation efficiency of commensals appears more important than microbial diversity and lessens the probability that specific gastrointestinal pathogens are contributing to cancer risk.National Institutes of Health (U.S.) (grant R01 AI37750)National Institutes of Health (U.S.) (grant R01 CA093405)National Institutes of Health (U.S.) (grant P30-ES02109)National Institutes of Health (U.S.) (grant P01 CA028842)National Institutes of Health (U.S.) (grant T32 RR07036

    Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells

    Get PDF
    Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/ Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed

    Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells

    Get PDF
    Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other natural compounds may share some of the effects of metformin. One "medicinal" fruit consumed by millions worldwide is berberine (BBR). Metformin and BBR both activate AMP-activated protein kinase (AMPK) which is a key mediator of glucose metabolism. Glucose metabolism has been shown to be very important in cancer and its significance is increasing. In the following studies, we have examined the effects of metformin, BBR and a panel of modified BBRs (NAX compounds) and chemotherapeutic drugs on the growth of four different human pancreatic adenocarcinoma cell lines (PDAC). Interestingly, the effects of metformin could be enhanced by BBR and certain modified BBRs. Upon restoration of WT-TP53 activity in MIA-PaCa-2 cells, an altered sensitivity to the combination of certain NAX compounds and metformin was observed compared to the parental cells which normally lack WT-TP53. Certain NAX compounds may interact with WT-TP53 and metformin treatment to alter the expression of key molecules involved in cell growth. These results suggest a therapeutic approach by combining certain pharmaceutical drugs and nutraceuticals to suppress the growth of cancer cells

    Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals

    Get PDF
    Mutations at the TP53 gene are readily detected (approximately 50-75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor increased. However, effects of nutlin-3a were also observed in MIA-PaCa-2 cells lacking WT-TP53, as upon co-treatment with nutlin-3a, the sensitivity to certain inhibitors, chemotherapeutic drugs and nutraceuticals increased. Interestingly, co-treatment with nutlin-3a and certain chemotherapeutic drug such as irinotecan and oxaliplatin resulted in antagonistic effects in cells both lacking and containing WT-TP53 activity. These studies indicate the sensitizing abilities that WT-TP53 activity can have in PDAC cells which normally lack WT-TP53, as well as, the effects that the MDM2 inhibitor nutlin-3a can have in both cells containing and lacking WT-TP53 to various therapeutic agents

    Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals

    Get PDF
    Klebsiella oxytoca is an opportunistic pathogen implicated in various clinical diseases in animals and humans. Studies suggest that in humans K. oxytoca exerts its pathogenicity in part through a cytotoxin. However, cytotoxin production in animal isolates of K. oxytoca and its pathogenic properties have not been characterized. Furthermore, neither the identity of the toxin nor a complete repertoire of genes involved in K. oxytoca pathogenesis have been fully elucidated. Here, we showed that several animal isolates of K. oxytoca, including the clinical isolates, produced secreted products in bacterial culture supernatant that display cytotoxicity on HEp-2 and HeLa cells, indicating the ability to produce cytotoxin. Cytotoxin production appears to be regulated by the environment, and soy based product was found to have a strong toxin induction property. The toxin was identified, by liquid chromatography-mass spectrometry and NMR spectroscopy, as low molecular weight heat labile benzodiazepine, tilivalline, previously shown to cause cytotoxicity in several cell lines, including mouse L1210 leukemic cells. Genome sequencing and analyses of a cytotoxin positive K. oxytoca strain isolated from an abscess of a mouse, identified genes previously shown to promote pathogenesis in other enteric bacterial pathogens including ecotin, several genes encoding for type IV and type VI secretion systems, and proteins that show sequence similarity to known bacterial toxins including cholera toxin. To our knowledge, these results demonstrate for the first time, that animal isolates of K. oxytoca, produces a cytotoxin, and that cytotoxin production is under strict environmental regulation. We also confirmed tilivalline as the cytotoxin present in animal K. oxytoca strains. These findings, along with the discovery of a repertoire of genes with virulence potential, provide important insights into the pathogenesis of K. oxytoca. As a novel diagnostic tool, tilivalline may serve as a biomarker for K oxytoca-induced cytotoxicity in humans and animals through detection in various samples from food to diseased samples using LC-MS/MS. Induction of K. oxytoca cytotoxin by consumption of soy may be in part involved in the pathogenesis of gastrointestinal disease

    Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota

    Get PDF
    Higher prevalence of helminth infections in Helicobacter pylori infected children was suggested to potentially lower the life-time risk for gastric adenocarcinoma. In rodent models, helminth co-infection does not reduce Helicobacter-induced inflammation but delays progression of pre-malignant gastric lesions. Because gastric cancer in INS-GAS mice is promoted by intestinal microflora, the impact of Heligmosomoides polygyrus co-infection on H. pylori-associated gastric lesions and microflora were evaluated. Male INS-GAS mice co-infected with H. pylori and H. polygyrus for 5 months were assessed for gastrointestinal lesions, inflammation-related mRNA expression, FoxP3[superscript +] cells, epithelial proliferation, and gastric colonization with H. pylori and Altered Schaedler Flora. Despite similar gastric inflammation and high levels of proinflammatory mRNA, helminth co-infection increased FoxP3[superscript +] cells in the corpus and reduced H. pylori-associated gastric atrophy (p < 0.04), dysplasia (p < 0.02) and prevented H. pylori-induced changes in the gastric flora (p < 0.05). This is the first evidence of helminth infection reducing H. pylori-induced gastric lesions while inhibiting changes in gastric flora, consistent with prior observations that gastric colonization with enteric microbiota accelerated gastric lesions in INS-GAS mice. Identifying how helminths reduce gastric premalignant lesions and impact bacterial colonization of the H. pylori infected stomach could lead to new treatment strategies to inhibit progression from chronic gastritis to cancer in humans.RO1-CA67529R01DK052413PO1CA26731P01 CA028842P30ESO2109R01DK06507

    Dietary Factors Modulate Helicobacter-associated Gastric Cancer in Rodent Models

    Get PDF
    Since its discovery in 1982, the global importance of Helicobacter pylori–induced disease, particularly in developing countries, remains high. The use of rodent models, particularly mice, and the unanticipated usefulness of the gerbil to study H. pylori pathogenesis have been used extensively to study the interactions of the host, the pathogen, and the environmental conditions influencing the outcome of persistent H. pylori infection. Dietary factors in humans are increasingly recognized as being important factors in modulating progression and severity of H. pylori–induced gastric cancer. Studies using rodent models to verify and help explain mechanisms whereby various dietary ingredients impact disease outcome should continue to be extremely productive.National Institutes of Health (U.S.) (P01CA028842)National Institutes of Health (U.S.) (P01CA026731)National Institutes of Health (U.S.) (P30ES002109
    • …
    corecore