65 research outputs found

    Occurrence of the Ordovician-type aglaspidid Tremaglaspis in the Cambrian Weeks Formation (Utah, USA)

    Get PDF
    The Guzhangian Weeks Formation preserves a diverse, yet virtually unstudied, non-trilobite arthropod fauna. Here we describe Tremaglaspis vanroyi sp. nov., the oldest representative of an enigmatic group of extinct arthropods, the Aglaspidida. Tremaglaspis was previously known from the Lower Ordovician and its morphology was regarded as particularly derived within the clade. Its occurrence in the Cambrian of Utah suggests that much of the early evolutionary history of the Aglaspidida remains unknown. A review of the environmental settings of previous aglaspidid findings suggests that these arthropods preferentially inhabited shallow-water environments, which may partially explain their limited fossil record

    A possible Cambrian stem-group gnathiferan-chaetognath from the Weeks Formation (Miaolingian) of Utah

    Get PDF
    In recent years the plethora of “weird wonders”, the vernacular for the apparently extinct major bodyplans documented in many of the Cambrian Lagerstätten, has been dramatically trimmed. This is because various taxa have either been assigned to known phyla or at least accommodated in larger monophyletic assemblages. Nevertheless, a number of Cambrian taxa retain their enigmatic status. To this intriguing roster we add Dakorhachis thambus n. gen. n. sp., from the Miaolingian (Guzhangian) Weeks Formation Konservat-Lagerstätte of Utah. Specimens consist of an elongate body lacking appendages, but which is apparently segmented. A prominent feeding apparatus consists of a circlet of triangular teeth, while posteriorly there are three distinct skeletal components. D. thambus n. sp. is interpreted as an ambush predator and may have been partially infaunal. The wider affinities of this new taxon remain conjectural but it is suggested that it may represent a stem-group member of the Gnathifera, today represented by the gnathostomulids, micrognathozoans, rotifers, and possibly with links also to the chaetognaths

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    'Notchia weugi' gen. et sp. nov.: a new short-headed arthropod from the Weeks Formation Konservat-Lagerstatte (Cambrian; Utah)

    No full text
    The Weeks Formation preserves a diverse, yet largely undescribed, exceptionally preserved fauna of late Guzhangian age. Here I describe 'Notchia weugi' gen. et sp. nov., a new arthropod characterized by a short cephalon, a trunk with 12 tergites and weakly differentiated into two morphological regions, and a spine-bearing rectangular telson. This combination of characters is incompatible with its assignment to any known groups. The new taxon also adds to examples of convergent evolution of ramified digestive glands in arthropods, possibly as an adaptation to infrequent feeding

    Ontogeny of Drevermannia and the origin of blindness in Late Devonian proetoid trilobites

    No full text
    International audienceNumerous silicified and calcareous sclerites of various sizes, recovered from the latest Famennian of Thuringia (Germany), allow the description of the first complete growth series of a blind proetoid trilobite: Drevermannia richteri. In addition, the partial ontogenetic development of Drevermannia antecurvata sp. Nov. and undetermined species, Drevermannia sp. l, are described. The proetoid anaprotaspides, associated with D. richteri, illustrate that a marked increase in larval size occurred prior to the terminal Devonian extinction event. Considering the homogeneity of larval size in older Devonian proetoids, it is interpreted as evidence that the developmental strategy of these trilobites was significantly modified. Though largely speculative, two alternative hypotheses are proposed to explain this modification. Finally, all three ontogenetic sequences show that ocular structures never develop externally in Drevermannia, but also illustrate that the development of optical nerves is not completely lost in this group. This suggests that blindness in the Drevermannia lineage followed a centripetal mode of eye reduction

    Ontogeny of Drevermannia

    No full text
    corecore