355 research outputs found

    Wind energy development issues

    Get PDF

    Customized birth weight for gestational age standards: Perinatal mortality patterns are consistent with separate standards for males and females but not for blacks and whites

    Get PDF
    BACKGROUND: Some currently available birth weight for gestational age standards are customized but others are not. We carried out a study to provide empirical justification for customizing such standards by sex and for whites and blacks in the United States. METHODS: We studied all male and female singleton live births and stillbirths (22 or more weeks of gestation; 500 g birth weight or over) in the United States in 1997 and 1998. White and black singleton live births and stillbirths were also examined. Qualitative congruence between gestational age-specific growth restriction and perinatal mortality rates was used as the criterion for identifying the preferred standard. RESULTS: The fetuses at risk approach showed that males had higher perinatal mortality rates at all gestational ages compared with females. Gestational age-specific growth restriction rates based on a sex-specific standard were qualitatively consistent with gestational age-specific perinatal mortality rates among males and females. However, growth restriction patterns among males and females based on a unisex standard could not be reconciled with perinatal mortality patterns. Use of a single standard for whites and blacks resulted in gestational age-specific growth restriction rates that were qualitatively congruent with patterns of perinatal mortality, while use of separate race-specific standards led to growth restriction patterns that were incompatible with patterns of perinatal mortality. CONCLUSION: Qualitative congruence between growth restriction and perinatal mortality patterns provides an outcome-based justification for sex-specific birth weight for gestational age standards but not for the available race-specific standards for blacks and whites in the United States

    Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes

    Get PDF
    Phosphatidylinositol 3-kinase Vps34 complexes regulate intracellular membrane trafficking in endocytic sorting, cytokinesis and autophagy. We present the 4.4 Ã… crystal structure of the 385 kDa endosomal complex II (PIK3C3-CII), consisting of Vps34, Vps15 (p150), Vps30/Atg6 (Beclin 1) and Vps38 (UVRAG). The subunits form a Y-shaped complex, centered on the Vps34 C2 domain. Vps34 and Vps15 intertwine in one arm where the Vps15 kinase domain engages the Vps34 activation loop to regulate its activity. Vps30 and Vps38 form the other arm that brackets the Vps15/Vps34 heterodimer, suggesting a path for complex assembly. Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) revealed conformational changes accompanying membrane binding and identified a Vps30 loop that is critical for the ability of complex II to phosphorylate giant liposomes on which complex I is inactive

    Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model

    Get PDF
    Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. © 2013 Kline et al

    The Cis-regulatory Logic of the Mammalian Photoreceptor Transcriptional Network

    Get PDF
    The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs) mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation
    • …
    corecore