565 research outputs found

    Dynamics of Lage Spiking Neural Networks

    Get PDF

    High conductance states in a mean field cortical network model

    Full text link
    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.Comment: 7 pages, 3 figures, presented at CNS 2003, to be published in Neurocomputin

    Response variability in balanced cortical networks

    Full text link
    We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external population. The high connectivity permits a mean-field description in which synaptic currents can be treated as Gaussian noise, the mean and autocorrelation function of which are calculated self-consistently from the firing statistics of single model neurons. Within this description, we find that the irregularity of spike trains is controlled mainly by the strength of the synapses relative to the difference between the firing threshold and the post-firing reset level of the membrane potential. For moderately strong synapses we find spike statistics very similar to those observed in primary visual cortex.Comment: 22 pages, 7 figures, submitted to Neural Computatio
    corecore