We study the spike statistics of neurons in a network with dynamically
balanced excitation and inhibition. Our model, intended to represent a generic
cortical column, comprises randomly connected excitatory and inhibitory leaky
integrate-and-fire neurons, driven by excitatory input from an external
population. The high connectivity permits a mean-field description in which
synaptic currents can be treated as Gaussian noise, the mean and
autocorrelation function of which are calculated self-consistently from the
firing statistics of single model neurons. Within this description, we find
that the irregularity of spike trains is controlled mainly by the strength of
the synapses relative to the difference between the firing threshold and the
post-firing reset level of the membrane potential. For moderately strong
synapses we find spike statistics very similar to those observed in primary
visual cortex.Comment: 22 pages, 7 figures, submitted to Neural Computatio